A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
A Novel Angular-Guided Particle Swarm Optimizer for Many-Objective Optimization Problems
2020
Complexity
Most multiobjective particle swarm optimizers (MOPSOs) often face the challenges of keeping diversity and achieving convergence on tackling many-objective optimization problems (MaOPs), as they usually use the nondominated sorting method or decomposition-based method to select the local or best particles, which is not so effective in high-dimensional objective space. To better solve MaOPs, this paper presents a novel angular-guided particle swarm optimizer (called AGPSO). A novel velocity
doi:10.1155/2020/6238206
fatcat:6lkt3kxwbrg2boc5wjsk3te7z4