A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Spatial Fusion GAN for Image Synthesis
[article]
2019
arXiv
pre-print
Recent advances in generative adversarial networks (GANs) have shown great potentials in realistic image synthesis whereas most existing works address synthesis realism in either appearance space or geometry space but few in both. This paper presents an innovative Spatial Fusion GAN (SF-GAN) that combines a geometry synthesizer and an appearance synthesizer to achieve synthesis realism in both geometry and appearance spaces. The geometry synthesizer learns contextual geometries of background
arXiv:1812.05840v3
fatcat:uzent4sy35cpjkslziikyppuni