Collaborative User Network Embedding for Social Recommender Systems [chapter]

Chuxu Zhang, Lu Yu, Yan Wang, Chirag Shah, Xiangliang Zhang
2017 Proceedings of the 2017 SIAM International Conference on Data Mining  
To address the issue of data sparsity and cold-start in recommender system, social information (e.g., user-user trust links) has been introduced to complement rating data for improving the performances of traditional model-based recommendation techniques such as matrix factorization (MF) and Bayesian personalized ranking (BPR). Although effective, the utilization of the explicit user-user relationships extracted directly from such social information has three main limitations. First, it is
more » ... cult to obtain explicit and reliable social links. Only a small portion of users indicate explicitly their trusted friends in recommender systems. Second, the "cold-start" users are "cold" not only on rating but also on socializing. There is no significant amount of explicit social information that can be useful for "cold-start" users. Third, an active user can be socially connected with others who have different taste/preference. Direct usage of explicit social links may mislead recommendation. To address these issues, we propose to extract implicit and reliable social information from user feedbacks and identify top-k semantic friends for each user. We incorporate the top-k semantic friends information into MF and BPR frameworks to solve the problems of ratings prediction and items ranking, respectively. The experimental results on three real-world datasets show that our proposed approaches achieve better results than the state-of-the-art MF with explicit social links (with 3.0% improvement on RMSE), and social BPR (with 9.1% improvement on AUC).
doi:10.1137/1.9781611974973.43 dblp:conf/sdm/ZhangYWSZ17 fatcat:flzmknehabaindfsgkrpiisl3e