How Successful Is Transfer Learning for Detecting Anorexia on Social Media?

Pilar López-Úbeda, Flor Miriam Plaza-del-Arco, Manuel Carlos Díaz-Galiano, Maria-Teresa Martín-Valdivia
<span title="2021-02-19">2021</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/smrngspzhzce7dy6ofycrfxbim" style="color: black;">Applied Sciences</a> </i> &nbsp;
Anorexia is a mental disorder that involves serious abnormalities in nutritional intake behavior. This behavior leads to significant weight loss, which can lead to severe malnutrition. Specifically, eating disorders exhibit the highest mortality rate of any mental illness. Early identification of anorexia, along with appropriate treatment, improves the speed of recovery in patients. Presently there is a strong and consistent association between social media use and eating concerns. Natural
more &raquo; ... age Processing, a branch of artificial intelligence, has the potential to contribute towards early anorexia detection in textual data. Currently, there is still a long way to go in the identification of anorexia on social media due to the low number of texts available and in fact, most of these are focused on the treatment of English texts. The main contribution of this paper is the application of transfer learning techniques using Transformer-based models for detecting anorexia in tweets written in Spanish. In particular, we compare the performance between already available multilingual and monolingual models, and we conduct an error analysis to understand the capabilities of these models for Spanish.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/app11041838">doi:10.3390/app11041838</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fddadtr6t5ap7eucebpf3xmduq">fatcat:fddadtr6t5ap7eucebpf3xmduq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210301032653/https://res.mdpi.com/d_attachment/applsci/applsci-11-01838/article_deploy/applsci-11-01838-v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/25/66/2566c46323adbd932fa20c628f542ffa2e447a4c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/app11041838"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>