Variational Adversarial Active Learning [article]

Samarth Sinha, Sayna Ebrahimi, Trevor Darrell
2019 arXiv   pre-print
Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a
more » ... ational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The mini-max game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100, Caltech-256, ImageNet, Cityscapes, and BDD100K. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. Our code is available at https://github.com/sinhasam/vaal.
arXiv:1904.00370v3 fatcat:4l7wyohuhzfe7pohdy5m74xk4a