Cortical plasticity for visuospatial processing and object recognition in deaf and hearing signers

Jill Weisberg, Daniel S. Koo, Kelly L. Crain, Guinevere F. Eden
2012 NeuroImage  
Experience-dependent plasticity in deaf participants has been shown in a variety of studies focused on either the dorsal or ventral aspects of the visual system, but both systems have never been investigated in concert. Using functional magnetic resonance imaging (fMRI), we investigated functional plasticity for spatial processing (a dorsal visual pathway function) and for object processing (a ventral visual pathway function) concurrently, in the context of differing sensory (auditory
more » ... n) and language (use of a signed language) experience. During scanning, deaf native users of American Sign Language (ASL), hearing native ASL users, and hearing participants without ASL experience attended to either the spatial arrangement of frames containing objects or the identity of the objects themselves. These two tasks revealed the expected dorsal/ventral dichotomy for spatial versus object processing in all groups. In addition, the object identity matching task contained both face and house stimuli, allowing us to examine category-selectivity in the ventral pathway in all three participant groups. When contrasting the groups we found that deaf signers differed from the two hearing groups in dorsal pathway parietal regions involved in spatial cognition, suggesting sensory experience-driven plasticity. Group differences in the object processing system indicated that responses in the face-selective right lateral fusiform gyrus and anterior superior temporal cortex were sensitive to a combination of altered sensory and language experience, whereas responses in the amygdala were more closely tied to sensory experience. By selectively engaging the dorsal and ventral visual pathways within participants in groups with different sensory and language experiences, we have demonstrated that these experiences affect the function of both of these systems, and that certain changes are more closely tied to sensory experience, while others are driven by the combination of sensory and language experience.
doi:10.1016/j.neuroimage.2011.12.031 pmid:22210355 pmcid:PMC3288167 fatcat:zziorn5yifhyzoshbaz63ffadm