Private Graph Data Release: A Survey [article]

Yang Li, Michael Purcell, Thierry Rakotoarivelo, David Smith, Thilina Ranbaduge, Kee Siong Ng
2021 arXiv   pre-print
The application of graph analytics to various domains have yielded tremendous societal and economical benefits in recent years. However, the increasingly widespread adoption of graph analytics comes with a commensurate increase in the need to protect private information in graph databases, especially in light of the many privacy breaches in real-world graph data that was supposed to preserve sensitive information. This paper provides a comprehensive survey of private graph data release
more » ... s that seek to achieve the fine balance between privacy and utility, with a specific focus on provably private mechanisms. Many of these mechanisms fall under natural extensions of the Differential Privacy framework to graph data, but we also investigate more general privacy formulations like Pufferfish Privacy that can deal with the limitations of Differential Privacy. A wide-ranging survey of the applications of private graph data release mechanisms to social networks, finance, supply chain, health and energy is also provided. This survey paper and the taxonomy it provides should benefit practitioners and researchers alike in the increasingly important area of private graph data release and analysis.
arXiv:2107.04245v1 fatcat:kixgz52kejarhjt6sbrkfy4cga