Hierarchical Communication Network Architectures for Offshore Wind Power Farms

Mohamed A. Ahmed, Young Chon Kim
2014 2014 International Symposium on Computer, Consumer and Control  
Nowadays, large-scale wind power farms (WPFs) bring new challenges for both electrical systems and communication networks. The communication networks represent the essential part in WPF because they provide real time monitoring and control for wind turbines from a remote location (local control center). However, different wind turbine applications have different requirements such as data volume, latency, bandwidth, QoS, etc. This paper proposes hierarchical communication network architectures
more » ... nsisting of a turbine area network (TAN), farm area network (FAN) and control area network (CAN) for offshore WPFs. The wind turbines are modelled based on the logical node (LN) concepts of IEC 61400-25 standard. To keep pace with the current development of wind turbine technology, the network design takes into account the extension of the LNs for both wind turbine foundation and meteorological measurements. The communication network of WPF is configured as a switch-based architecture where each wind turbine has a dedicated link to the wind farm main switch. Servers at the control center are used for storing and processing the received data from WPF. The network architecture is modelled and evaluated by OPNET. We investigated the end-to-end (ETE) delay for different WPF applications. Our network architecture is validated by analyzing the simulation results.
doi:10.1109/is3c.2014.85 fatcat:3zfk7evzgbfvlhxftvrgfqfi7e