A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Predictive State Smoothing (PRESS): Scalable non-parametric regression for high-dimensional data with variable selection
2017
unpublished
We introduce predictive state smoothing (PRESS), a novel semi-parametric regression technique for high-dimensional data using predictive state representations. PRESS is a fully probabilistic model for the optimal kernel smoothing matrix. We present efficient algorithms for the joint estimation of the state space as well as the non-linear mapping of observations to predictive states and as an alternative algorithms to minimize leave-one-out cross validation error. The proposed estimator is
fatcat:y5vgdansrbf2nlwlc6zmhgyfw4