Numerical Sets, Core Partitions, and Integer Points in Polytopes [article]

Hannah Constantin, Benjamin Houston-Edwards, Nathan Kaplan
<span title="2015-09-21">2015</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We study a correspondence between numerical sets and integer partitions that leads to a bijection between simultaneous core partitions and the integer points of a certain polytope. We use this correspondence to prove combinatorial results about core partitions. For small values of a, we give formulas for the number of (a,b)-core partitions corresponding to numerical semigroups. We also study the number of partitions with a given hook set.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1509.06077v1</a> <a target="_blank" rel="external noopener" href="">fatcat:7yskdhpi45ekjho36dxnug5g4y</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>