A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
SHAT: A Novel Asynchronous Training Algorithm That Provides Fast Model Convergence in Distributed Deep Learning
2021
Applied Sciences
The recent unprecedented success of deep learning (DL) in various fields is underlied by its use of large-scale data and models. Training a large-scale deep neural network (DNN) model with large-scale data, however, is time-consuming. To speed up the training of massive DNN models, data-parallel distributed training based on the parameter server (PS) has been widely applied. In general, a synchronous PS-based training suffers from the synchronization overhead, especially in heterogeneous
doi:10.3390/app12010292
fatcat:6ajaqxzvlbcapnovevkdzoqpgy