Deep Reinforcement Learning with Weighted Q-Learning [article]

Andrea Cini, Carlo D'Eramo, Jan Peters, Cesare Alippi
2020 arXiv   pre-print
Overestimation of the maximum action-value is a well-known problem that hinders Q-Learning performance, leading to suboptimal policies and unstable learning. Among several Q-Learning variants proposed to address this issue, Weighted Q-Learning (WQL) effectively reduces the bias and shows remarkable results in stochastic environments. WQL uses a weighted sum of the estimated action-values, where the weights correspond to the probability of each action-value being the maximum; however, the
more » ... tion of these probabilities is only practical in the tabular settings. In this work, we provide the methodological advances to benefit from the WQL properties in Deep Reinforcement Learning (DRL), by using neural networks with Dropout Variational Inference as an effective approximation of deep Gaussian processes. In particular, we adopt the Concrete Dropout variant to obtain calibrated estimates of epistemic uncertainty in DRL. We show that model uncertainty in DRL can be useful not only for action selection, but also action evaluation. We analyze how the novel Weighted Deep Q-Learning algorithm reduces the bias w.r.t. relevant baselines and provide empirical evidence of its advantages on several representative benchmarks.
arXiv:2003.09280v2 fatcat:mhybvtbsofelxmd2npfrvql354