Specific Interactions Between The Alkaline Protease of P. Aeruginosa And Its Natural Peptide Inhibitor: Ab Initio Molecular Simulations [post]

Ryosuke Saito, Kyohei Imai, Shohei Yamamoto, Takuya Ezawa, Satoshi Sugiyama, Linn Samira Mari Evenseth, Ingebrigt Sylte, Noriyuki Kurita
2021 unpublished
Alkaline protease aeruginolysin (APR) is an important virulence factor in the evasion of the immune system by Pseudomonas aeruginosa (P. aeruginosa). The P. aeruginosa genome also encodes the highly potent and specific APR peptide inhibitor (APRin). However, the structural reason for the significant inhibition has not been revealed. Using ab initio molecular simulations, we here investigated the specific interactions between APR and APRin to elucidate which amino acid residues of APRin and APR
more » ... s of APRin and APR contribute strongest to the inhibition. Since APR has a Zn ion at the ligand-binding site, and histidine and glutamic acid residues are coordinated with Zn, it is essential to precisely describe these coordination bonds to elucidate the specific interactions between APR and APRin. Therefore, we employed the ab initio fragment molecular orbital method to investigate the specific interactions at an electronic level. The results revealed that Ser1 and Ser2 at the N-terminal of APRin significantly contribute to the binding between APRin and APR. In particular, Ser1 binds strongly to Zn as well as to the sidechains of Hid176, Hid180, and Hid186 in APR. This is the main reason for the strong interaction between APR and APRin. The results also elucidated significant contributions of the positively charged Arg83 and Arg90 residues of APRin to the binding with APR. These findings may provide information useful for the design of novel small agents as potent APR inhibitors.
doi:10.21203/rs.3.rs-523800/v1 fatcat:ccrkfbstubevxomask2b6xod7m