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ABSTRACT

Subseasonal tropical cyclone forecasts from two operational forecast models are verified for the 2017/18

and 2018/19 Southern Hemisphere cyclone seasons. The forecasts are generated using the ECMWF’s

Medium- and Extended-Range Ensemble Integrated Forecasting System (IFS), and the Bureau of

Meteorology’s seasonal forecasting systemACCESS-S1. Results show the IFS ismore skillful thanACCESS-S1,

which is attributed to the IFS’s greater ensemble size, increased spatial resolution, and data assimilation schemes.

Applying a lagged ensemble withACCESS-S1 increases forecast reliability, with the optimumnumber of lagged

members being dependent on forecast lead time. To investigate the impacts of atmospheric assimilation at

shorter lead times, comparisonsweremadebetween theBureauofMeteorology’sACCESS-S1 andACCESS-GE2

systems, the latter a global NumericalWeather Prediction system running with the same resolution andmodel

physics as ACCESS-S1 but using an ensemble Kalman filter for data assimilation. This comparison showed

the data assimilation scheme used in the GE2 system gave improvements in forecast skill for days 8–10,

despite the smaller ensemble size used in GE2 (24 members per forecast compared to 33). Finally, a multi-

model ensemble was created by combining forecasts from both the IFS and ACCESS-S1. Using the multi-

model ensemble gave improvements in forecast skill and reliability. This improvement is attributed to

complementary spatial errors in both systems occurring acrossmuch of the SouthernHemisphere as well as an

increase in the ensemble size.

SIGNIFICANCE STATEMENT

Advances inmodel development allow skillful forecasts of tropical cyclone activity beyond the normal limit

of weather prediction (typically 14 days, or a two-week forecast) and into the ‘‘subseasonal’’ time frame. This

is achieved by coupling high-resolution ensemble global forecast models to global ocean models. These

subseasonal forecasts fill the gap between traditional weather forecasts and monthly climate outlooks. This

study verifies two separate subseasonal cyclone forecasting system for the 2017/18 and 2018/19 cyclone sea-

sons over the Southern Hemisphere. Both systems showed good skill in forecasting cyclone activity out to

three weeks in advance. By combining the results of both models, forecast skill is further improved.

1. Introduction

Subseasonal tropical cyclone forecasts at the ECMWF

were first verified by Vitart et al. (2010). This study an-

alyzed 46-day hindcasts issued on the 15th of eachCorresponding author: Paul Gregory, paul.gregory@bom.gov.au
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month from 1989 to 2008 with ECMWF Integrated

Forecasting System (IFS), versionCy32r3. Forecasts issued

over the Southern Hemisphere were compared against a

statistical model developed by Leroy and Wheeler (2008)

that used Madden–Julian oscillation (MJO) real-time

multivariate indices and empirical orthogonal functions

of sea surface temperature anomalies as predictors. This

IFS model forecast a large number of false alarms that

gave the statistical model better skill after week two.

Applying a simple calibration method to the dynamical

model improved forecast reliability significantly, at the

expense of sharpness. Amultimodel combination of both

models gave the best Brier skill scores (BSS), but with less

sharpness than the calibrated dynamical model.

The ECMWF began issuing twice-weekly global mul-

tiweek cyclone forecasts in 2012 (Vitart et al. 2012).

Forecast skill was assessed using a research version of the

32-day IFS with model version Cy36r4 featuring 15 en-

semble members. This assessment used forecasts initial-

ized on the first day of every month from 1989 to 2008.

BSS showed skill out to 25 days, with improved skill in the

Southern Hemisphere.

The ECMWF remains the only center to issue oper-

ational subseasonal cyclone forecasts based on a dy-

namical model. A recent review by Camargo et al.

(2019) highlighted that only four agencies currently is-

sue subseasonal forecasts. They are as follows:

Colorado State University issues a two-week fore-

cast of accumulated cyclone energy (ACE) for the

North Atlantic based on a statistical model that

uses a variety of inputs, including current MJO

indices, current storm activity, and numerical

weather prediction (NWP) inputs.

ECMWF issues predicted numbers of storms and

ACE, as well as strike probability maps for weeks

1–4 over the globe based on IFS forecasts.

The China Meteorological Administration (CMA)

issues a variety of forecast products (ACE, landfall

in China, storm numbers) for the northwest Pacific

for weeks 1–4. Their system uses inputs from the

Canadian CFSv2 model to provide statistical fore-

casts (see Gao and Li 2011).

BoM computes predicted storm tracks and strike

probabilities for weeks 1–4 over the globe using

ACCESS-S1 forecasts. Calibrated products are

also generated over the Southern Hemisphere and

northwest Pacific. This is a nonoperational product

currently used only for research purposes.

Currently, only the Colorado State University fore-

casts are freely available to the general public.

The main aim of this study is to validate the ECMWF

and BoMdynamical model-based forecasts of subseasonal

cyclone activity over the Southern Hemisphere for the

2017/18 and 2018/19 seasons. This will provide accurate

verification statistics of the latest ECMWF forecasts, which

were last verified in 2012. It will also extend the prior work

of Gregory et al. (2019) to validate the ACCESS-S1 real-

time forecasts over a larger sample space. In addition to

aggregate statistics, this study includes two case studies for

illustration.

An additional comparison between ACCESS-S1 and

ACCESS-GE2 will determine the impact of atmospheric

data assimilation on forecast skill for days 8–10. ACCESS-

GE2 was a prototype NWP system that used the same

atmospheric model as ACCESS-S1 at the same resolution

but used an ensemble Kalman filter assimilation scheme.

The secondary aim is to determine whether a multi-

model ensemble of both forecast systems (IFS and

ACCESS-S1) provides improvements in forecast skill.

2. Southern Hemisphere tropical cyclone activity
from 2017 to 2019

In the Southern Hemisphere, the tropical cyclone

(TC) season officially begins on 1 November and ends

on 30 April; however, a TC can form at any time during

the year. To ensure consistency with results published

earlier by Vitart et al. (2012), the verification period

was defined as 1 November 2017–30 April 2018, and

1 November 2018–30 April 2019. TCs outside of this

period are excluded from the analysis.

Real-time track data were collated from NOAA.1

For these 2017/18 and 2018/19 seasons, the number of

storms recorded during the verification period in the

Southern Hemisphere was 21 and 24, respectively.

These represent slightly below-average amounts of

storm activity when compared to the long-term aver-

ages of 24.3 storms per season. This long-term average

was computed by Schreck et al. (2014) using data be-

tween 1981 and 2010 from International Best Track

Archive for Climate Stewardship–World Meteorological

Organization (IBTrACS-WMO).

Observed tracks for both seasons are given in Fig. 1. In

terms of TC impact, both seasons featured several de-

structive storms, including Gita in the South Pacific

Ocean in February 2018 and Kenneth in the southwest

Indian Ocean in April 2019. Severe TC Gita was the

most intense storm recorded in the South Pacific region

(1608E–1208W) in the 2017/18 TC season with a maxi-

mum sustained wind (10-min average) of 205 kmh21

and lifetime minimum central pressure of 927 hPa. Gita

impacted many Pacific island nations with the most

1 https://www.ssd.noaa.gov/PS/TROP/DATA/ATCF/JTWC.
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significant damage being reported in Tonga and the

Samoan Islands. Intense TC Kenneth was the strongest

storm in the southwest Indian Ocean region (308–908E)
with maximum sustained wind (10-min average) of

215kmh21 and lifetime minimum central pressure of

934hPa. Kenneth caused widespread destruction and

several deaths in Comoros and Mozambique; it was the

most intense landfalling storm in Mozambique’s recor-

ded history.

To reduce TC impacts on populations and infrastruc-

ture, early warning systems can be strengthened by pro-

viding advanced forecasts (2–4 weeks ahead) of storm

development and impacts. Note that over 30000 people

were evacuated in Mozambique ahead of Kenneth’s

path. Improved subseasonal forecasts will be invalu-

able in such situations.

3. Model configurations

a. ECMWF forecast system

The ECMWF IFS underwent one model change

during the verification period. Cycle 43r3 was active

from 11 July 2017 until 5 June 2018 when it was

replaced with Cycle 45r1.

All IFS forecasts in this study (bothmediumandextended

range) were coupled to a 0.258 ocean model (NEMO).

Both themediumand extended-range IFS use the same

51-member ensemble prediction system. The 51-member

medium-range forecasts are produced twice daily (0000

and 1200 UTC) at 16-km resolution with lead time out to

15 days. The extended-range forecasts are an extension of

the same 51-member medium-range forecasts with a lead

time extended to 46 days. These forecasts are run twice a

week (every Monday and Thursday) at a 32-km resolu-

tion after day 15. The 51-member ensemble is initialized

from the operational 4D-VAR analysis. There was no

change in model resolution between IFS versions C43r4

and C45r1.

Initial perturbations are generated using a combina-

tion of singular vectors, and perturbations generated

using the ECMWF ensemble of data assimilations (see

Leutbecher and Palmer 2008; Buizza et al. 2008). A

stochastic physics scheme [stochastically perturbed pa-

rametrization tendencies (SPPT)] is used to represent

model uncertainty (Lock et al. 2019).

The total number of medium-range forecasts verified

in this study was 383, while 112 extended-range forecasts

were verified.

b. Bureau ACCESS forecast systems

The Australian Bureau of Meteorology’s ACCESS-S1

model is a coupled ocean–atmosphere model used pri-

marily for seasonal prediction. The system became oper-

ational inAugust 2018, with daily forecasts out to 210 days.

This system is based on the Met Office Global Seasonal

forecast system, version 5 (GloSea5; MacLachlan et al.

2015), and differs only in the initialization of the atmo-

spheric ensemble spread (see Hudson et al. 2017).

ACCESS-S1 uses scaled random perturbations to

generate an atmospheric ensemble spread. Eleven en-

sembles members are forecast out to 210 days. To

provide a better skill in the subseasonal lead times,

22 additional ensembles are generated with forecast

leads of 42 days.

The atmospheric resolution of ACCESS-S1 is N216

(approximately 60 km) and it uses the Met Office

UnifiedModel, version 8.3. This version of the Unified

Model (UM) was released as part of the Global Atmo

sphere 6.0 (GA6.0) suite; full details can be found in

Walters et al. (2017). This atmospheric model is coupled

FIG. 1. Tracks used in the verification study (top) from November 2017 to April 2018 and

(bottom) from November 2018 to April 2019. Data obtained from NOAA.
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to the NEMO ocean model at 0.258 resolution with 75

vertical levels.

ACCESS-GE2 was a prototype NWP system that used

an ensemble Kalman filter to generate a 24-member en-

semble forecast out to 10 days. It used the same UM

version as ACCESS-S1 at the same resolution. Forecasts

were generated slightly behind real time throughout the

verification period. Only the 0000 UTC forecasts were

analyzed to provide a like-for-like comparison with the

corresponding ACCESS-S1 forecasts.

c. Tracking schemes

Since 2012, the ECMWF has used the same cyclone

tracker for all forecast products. As described in Vitart

et al. (1997), vorticity maximums (or minimums in the

Southern Hemisphere) that lie within 88 latitude of an

MSLP minimum are identified as possible candidates.

Additional thresholds are tested for geopotential height

and upper-air temperature to ensure the cyclone has a

warm core (and hence is not an extratropical storm).

Once these points have been identified, the algorithm

presented in Van der Grijn et al. (2005) is used to

compute the trajectory. A 10-m wind speed threshold of

17ms21 is applied to the trajectory; storms that fail to

reach this threshold are discarded.

ForACCESS-S1andGE2 forecasts, trackswere extracted

for every daily 0000 UTC forecast. The Okubo–Weiss–Zeta

parameter (OWZ) tropical cyclone detection scheme

developed by Tory et al. (2013) was used to compute

the location of possible cyclones based on ACCESS-S1

atmospheric fields.

The OWZ tracker was designed for use with coarse-

resolution coupled ocean–atmospheric models. Instead

of identifying storms using MSLP minima and vorticity

maximum criteria (which are grid dependent and often

not suitable for coarse-resolution coupled models) it

searches for conditions conducive to cyclogenesis. These

conditions are identified with the following atmospheric

parameters: solid body rotation at 850 and 500 hPa,

relative humidity at 950 and 700hPa, specific humidity at

950 hPa, and low wind shear between 850 and 200 hPa.

Points that satisfy certain thresholds for these parame-

ters are identified and trajectories are computed that

join each point in time. In this study, threshold points

were identified at every daily time step. As detailed in

Gregory et al. (2019), an 850-hPa wind speed threshold

of 14ms21 was applied to every storm track. Storms that

failed to reach this threshold were discarded.

d. Calibration

A calibration scheme was also applied to OWZ storm

tracks computed from ACCESS-S1 forecasts. In this

scheme, the forecast probabilities for each hindcast year

are scaled by the ratio of the observed climate mean to

the forecast mean over the entire hindcast excluding the

year of the forecast (leave-one-out cross validation).

The ACCESS-S1 hindcast spans 1990–2012 with four

start dates per month. The calibration scaling factors

were averaged across the entire season (November–

April) from 1990 to 2012. Details of this scheme are

found in Camp et al. (2018), where it is denoted as

CAL2-CV. This scaling factor is computed for each

forecast lead time (i.e., days 8–14, 15–21 and 22–28)

TABLE 1. BSSs for ACCESS-S1 raw tracks, raw tracks with wind

speed threshold, and calibrated probabilities.

Forecast

period

Raw

tracks

Raw tracks w/wind speed

threshold

Calibrated

probabilities

8–14 0.132 0.193 0.187

15–21 0.029 0.093 0.100

22–28 20.004 0.075 0.081

FIG. 2. Reliability plots for ACCESS-S1 using three different processing methods (raw tracks, raw tracks with wind speed threshold, and

calibrated probabilities) for varying lead time: (left) 8–14, (center) 15–21, and (right) 22–28 days.

1820 WEATHER AND FORECAST ING VOLUME 35

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/5/1817/4988872/w

afd200050.pdf by guest on 13 August 2020



within each verification region. The size of each verifi-

cation region is 158 latitude 3 208 longitude, so the cal-

ibration scheme degrades the spatial resolution of the

forecast tracks. Further details of the verification re-

gions are provided in section 3e.

e. Verification methodology

Using the process detailed in Camp et al. (2018), the

Southern Hemisphere from 08 to 308S latitude, and from

308 to 2408E longitude, is divided into 60 overlapping

regions, each with size 158 latitude 3 208 longitude. For
every available forecast and lead time, the forecast and

observed storm probabilities are computed in each re-

gion. Observed probabilities in each region are either

zero or one. In the case of ACCESS-S1 calibrated

forecasts, the raw forecast probability in each verifica-

tion region is multiplied by the corresponding scaling

factor for a given forecast lead time. From this data,

reliability diagrams and BSS are computed. For each

forecast lead time, the BSS is computed over all fore-

casts for all regions and is defined as

BSS5 12
BS

BS
reference

, (1)

that is, the relative skill of a probabilistic forecast over

climatology. It ranges from 2‘ to one, with scores

greater than zero indicating skill over the reference

forecasts (climatology in our case). See Wilks (1995) for

further information.

4. Forecast reliability and skill

a. ACCESS-S1

BSS for the ACCESS-S1 forecasting system are shown

in Table 1. Scores are shown for 1) raw tracks, 2) tracks

with the wind speed threshold applied, and 3) applying

the calibration factors computed using the 1990–2012

hindcast. Corresponding reliability plots and sharpness

diagrams are shown in Fig. 2.

These results are consistent withGregory et al. (2019).

The wind speed threshold improves skill by filtering out

low-intensity tropical storms from the model outputs.

Likewise, using the hindcast calibration factors im-

proves reliability for longer lead times at the expense of

sharpness.

To take advantage of daily ACCESS-S1 forecasts,

lagged ensemble forecasts were also generated. BSS for

the lagged ensemble forecasts using the wind speed

threshold are shown in Table 2. Here, ‘‘lag 0’’ refers to

the default forecasts, ‘‘lag 2’’ includes ensembles from

the previous day (hence forecasts include two days of

data), ‘‘lag 3’’ includes forecasts from the two previous

days (hence forecasts include three days of data) and so

on. So, the lag 2 system is a 66-member ensemble, the lag

3 is a 99-member ensemble, and so on.

For the fourth week forecasts (days 22–28), the lag

only included forecasts out to 30 days, as this was

the maximum lead time of ACCESS-S1 model data

retrieved from the operational output. This limits

the amount of lower skill forecasts added to the

ensemble.

Results shown in Table 2 and Fig. 3 show the opti-

mal amount of lag depends on the forecast lead time.

TABLE 2. BSS for ACCESS-S1 raw tracks with wind speed

threshold and increasing ensemble size using additional lagged

forecasts.

Forecast period Lag 0 Lag 2 Lag 3 Lag 4 Lag 5

8–14 0.193 0.198 0.193 0.194 0.175

15–21 0.093 0.103 0.105 0.106 0.106

22–28 0.075 0.089 0.097 0.103 0.108

FIG. 3. Reliability plots for ACCESS-S1 tracks using the wind speed threshold for varying forecast lag and lead time: (left) 8–14, (center)

15–21, and (right) 22–28 days.
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For 8–14-day lead times, using a lagged forecast improves

reliability of higher probability events. However, for lag

greater than 2, sharpness is reduced. For 15–21-day lead

times, reliability is again improved for higher probability

events. However, this comes at the expense of lower

resolution and loss of skill for forecast events with prob-

abilities equal to 0.5. Finally, for 22–28-day lead times,

reliability consistently increases with lag, although this is

due to the maximum lead time of available forecasts

being restricted to 30 days.

Based on these results, the optimal lag for 8–14- and

15–21-day forecasts was lag 2. For 22–28-day forecasts,

reliability continues with increasing lag (subject to the

maximum lead time of 30 days). Hence the lag 5 fore-

casts gave the best reliability.

b. ACCESS-GE2

Cyclone tracks were also extracted from 8–10-day

ACCESS-GE2 forecasts over the same period. BSS for

the GE2 forecasts are shown in Table 3 with the corre-

sponding reliability plots shown in Fig. 4. The GE2

system consistently provides better skill as measured

by BSS, with improved reliability. For lag 0 forecasts,

GE2 provides better reliability except for higher prob-

ability events (although GE has improved sharpness

for events with forecast probabilities greater than 0.8).

With increasing ensemble lag, GE2 maintains its supe-

rior reliability although it does trend to overforecast low

probability events.

GE2 provides consistently more reliable forecasts,

despite using fixed SSTs. These results show that at-

mospheric data assimilation is more important than

coupling to an ocean for 8–10-day lead times.

c. ECMWF/IFS

Brier skill scores for the IFS are shown in Table 4.

These scores are much higher (and therefore more

skillful) than the ACCESS-S1 equivalents. However,

examination of the reliability plots in Fig. 5 show that

this skill is mainly associated with lower probability

events. The IFS is overconfident for forecast proba-

bilities greater than 0.5 and this bias becomes signif-

icant for lead times beyond 15 days. However, this

lack of reliability may also be a factor of sample size;

recall that the IFS longer-range forecasts are made

only twice per week. Hence there are only 112 forecasts

with lead times of 15–21 and 22–28 days in the sample

period, compared with 383 forecasts with 8–14-day

lead times.

d. A multimodel ensemble

Amultimodel ensemble (MME)was created by adding

the subset of ACCESS-S1 forecasts that shared the same

forecast dates as the IFS forecast dates. Hence the MME

forecasts for weeks three and four are only computed

twice per week. This was done in preference to assessing

skill for every forecast date, which would have otherwise

contaminated the MME sample space with forecasts us-

ing only ACCESS-S1 results. For forecasts with a maxi-

mum of 10-day lead times, the MME can also include

ACCESS-GE2 forecasts.

Figure 6 plots the reliability of an MME, with Table 5

showing the corresponding BSS. TheMME has slightly

higher scores than the IFS model for all lead times.

Using lagged ACCESS-S1 forecasts in the MME de-

graded the skill. Presumably, this is due to changing

TABLE 3. BSSs for ACCESS-S1 and ACCESS-GE2 tracks for

8–10-day forecasts with wind speed thresholds and increasing

ensemble size using additional lagged forecasts.

Model Lag 0 Lag 2 Lag 3

ACCESS-S1 0.185 0.187 0.183

ACCESS-GE2 0.201 0.207 0.205

FIG. 4. Reliability plots for ACCESS-S1 and GE2 tracks using the wind speed threshold for 8–10-day forecasts and varying forecast lag:

(left) lag 0, (center) lag 2, and (right) lag 3 forecasts.
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the weighting between the IFS ensembles (more

skillful) and the ACCESS-S1 ensembles (less skill-

ful). The ‘‘default’’ subseasonal MME (with lag 0) is

an 84-member ensemble, with 51 members from the

IFS and 33 from ACCESS-S1, giving a ratio between

the two systems of 1.54:1. Using lag 2 or lag 3 systems

changes this ratio to 0.77:1 and 0.52:1, respectively. For

10-day lead times, the MME is a 108 member ensemble,

with an additional 24 members sourced from ACCESS-

GE2. The skill score of the 108-member MME forecasts

shows the same behavior as the 84-member MME,

that is, scores degrade as the ratio of ACCESS-GE2/S1

ensembles increases.

The MME improves reliability over the standard

IFS forecasts (shown in Fig. 5), particularly for high

forecast probabilities. The reliability improves due

to the larger ensemble size. For 8–10-day forecasts,

the addition of ACCESS-GE2 forecasts to the MME

(shown in magenta) shows a useful improvement in

reliability compared to the 84-member MME (shown

in red).

Further explanation regarding causes of the im-

proved reliability of the MME can be found by ana-

lyzing the spatial anomalies of each forecast system

over the two cyclone seasons (see Fig. 7). These spatial

anomalies are created by first computing the forecast

storm density over all available forecasts for a given

lead time. The observed storm density corresponding

to these forecast valid times is then subtracted from the

forecast density. Hence, positive anomalies correspond

to a region where the model is overconfident (i.e.,

forecasting false alarms).

The reliability plots of both systems showed they

both overforecast cyclone events. However, the spatial

distribution of these forecast biases differs for both

systems across the Southern Hemisphere. Figure 7 shows

that while the ACCESS-S1 is overconfident, most of the

false alarms are centered over the Indian Ocean be-

tween 608 and 758E longitude. This is most likely re-

lated to the well-known wet bias in the Met Office

atmospheric model in this region. See Bush et al. (2015)

for analysis of this bias using Global Atmosphere 3.0

(GA3.0) models at N96 resolution, Levine and Martin

(2018) for GA3.0 analysis at N512 resolutions and

Jin et al. (2019) for analysis of GA6.0 at N96 and

N216 resolutions. Hence in this region, the wet bias

will excessively trigger the humidity thresholds of

the OWZ tracking scheme. This bias may contribute

to the findings of Titley et al. (2020) who showed that

Met Office 7-day global cyclone forecasts [generated

from the Met Office Global and Regional Ensemble

Prediction System (MOGREPS) system] had their

worst skill in the southwest Indian Ocean. Over the re-

mainder of the Southern Hemisphere, the ACCESS-S1

system tends to underforecast cyclone events.

In contrast, the IFS consistently overforecasts cy-

clone activity throughout the Southern Hemisphere.

The exception occurs in the Indian Ocean, where it

underpredicts activity between 758 and 908E (a fea-

ture it shares with the ACCESS-S1 system). Titley

et al. (2020) also verified an MME for 7-day lead

times (using MOGREPS, IFS, and the U.S. National

Center for Environment Prediction’s Global Ensemble

Forecast System), which showed the IFS cyclone fore-

casts had their lowest skill in the southwest Indian

Ocean. Clearly this region of the Southern Hemisphere

contains challenges for cyclone forecasting.

For our subseasonal MME, combining the two

model forecasts together reduces forecast bias over

much of the Southern Hemisphere, which improves

forecast performance. For 8–10-day forecasts, the

spatial forecast anomaly distributions are similar.

Figure 8 shows the spatial errors for the two ACCESS

system for 8–10-day forecasts. This plot suggests

the improved skill recorded by ACCESS-GE2 over

S1 is attributed to improvements in south Indian

TABLE 4. BSSs for IFS tracks with default ECMWF storm

thresholds.

Forecast period 8–10 8–14 15–21 22–28

0.294 0.299 0.179 0.149

FIG. 5. Reliability plots for IFS tracks for varying lead times (shown from left to right): 8–10, 8–14, 15–21, and 22–28 days.
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Ocean near 708E and in the vicinity of Noumea

(1608E–1808).

5. Case studies

Two cases studies show forecasts of the two systems

and examples of MME forecasts. The first case study

was Cyclone Gita, which impacted Tonga as a category

4 cyclone in February 2018. The second is Cyclone

Kenneth, which struck Mozambique in April 2019,

also as a category 4 storm.

a. Cyclone Gita

Cyclone Gita formed in the South Pacific Ocean on

9 February and made landfall as a category 4 cyclone in

Tonga two days later. Gita was the strongest cyclone of

the 2017/18 South Pacific season and its track exhibited

significant recurvature. At the same period, Cyclone

Cebile (which formed in the southwest Indian Ocean

on 27 January at 858E) weakened to a tropical low on

9 February after earlier reaching category 4 intensity.

Figure 9 shows the ACCESS-S, IFS, andMME forecasts

issued on 22 January and 29 for 15–21- and 8–14-day

forecasts, valid between 6 and 12 February 2018.

The ACCESS-S1 three-week forecast for 22 January

incorrectly forecast cyclone activity in the Coral Sea

and east of the date line. Good guidance of storm

activity was forecast in the Indian Ocean, while the

model suggested two likely centers of storm forma-

tion in the South Pacific at 1758E and 1708W, re-

spectively. The IFS forecast for this date created

false alarms throughout northern Australia in addi-

tion to the Coral Sea, as well as near Madagascar and

Mozambique. However, it correctly clustered most

tracks around Fiji. The MME reduced the probabili-

ties associated with the false alarms across northern

Australia, while centering the chance of cyclone ac-

tivity in the coming three weeks around Fiji at 1808.
MME guidance for storm activity in the Indian Ocean

lacked a coherent signal.

Moving to the two-week forecasts issued on 29 January,

both systems moved the location of most likely storm

formation farther east of the date line at around 1708W.

ACCESS-S1 no longer forecast any storm activity in the

Indian Ocean. This is most likely attributable of the OWZ

tracking algorithm, as forecast storm tracks south of 258S
would be unlikely to meet the sustained humidity thresh-

olds for cyclogenesis. Forecast storm probabilities in the

Coral Sea have lowered significantly. The IFS forecast

in contrast gives excellent guidance for Cebile, while no

longer forecasting false alarms in northwest Australia

(although it still suggests a strong chance of cyclone for-

mation in the Coral Sea). The MME forecast concen-

trates storm activity in the Pacific at around 1658W. The

MME signal surrounding Cebile is still strong (due to the

IFS forecast) and false alarms were still forecast near

Madagascar/Mozambique and in the Coral Sea.

Examining 10-day forecasts issued on 2 February, Fig. 10

shows that ACCESS-GE2 forecast storm formation in the

Pacific north of 208S, while ACCESS-S1 shifts the forecast

storm location southward. Both ACCESS-S systems pro-

duced small false alarms of northwest Australia. The IFS

forecast strike probability in the Pacific is much more

coherent than the corresponding ACCESS systems,

which is most likely attributable to its finer spatial res-

olution. Both the ACCESS and IFS 10-day forecasts are

more spatially coherent that the 14-day equivalent, which

is to be expected with shorter lead times. The IFS con-

tinued to forecast false alarms in the Coral Sea, although

this signal is lower in the MME.

FIG. 6. Reliability plots for an MME, combining IFS, ACCESS-S1, and ACCESS-GE2 tracks for varying lead times (shown from left to

right): 8–10, 8–14, 15–21, and 22–28 days.

TABLE 5. BSSs for MME tracks. These statistics are computed

for available IFS forecasts using ACCESS-S1 tracks with a variety

of forecast lag. Scores computed for days 8–10 also include

ACCESS-GE2 forecasts.

Forecast period Lag 0 Lag 2 Lag 3

8–10 0.311 0.295 0.283

8–14 0.314 0.298 0.286

15–21 0.181 0.149 0.130

22–28 0.143 0.117 0.112
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b. Cyclone Kenneth

Cyclone Kenneth formed off the coast of Mozambique

on 21 April 2019. It made landfall as a category 4 cyclone

over Mozambique on 25 April, making it the strongest

storm to do so in recorded history. Kenneth was the

strongest storm of the 2018/19 south Indian Ocean sea-

son. Around the same time, Cyclone Lorna formed

southeast of theMaldives on 22April and continued to be

active around 908E until 30 April. Figure 11 shows the

ACCESS-S, IFS and MME forecasts issued on 4 and

10 April for 15–21- and 8–14-day forecasts, valid between

19 and 25 April 2019.

The ACCESS-S1 3-week forecast for 4 April gave

good guidance for storm activity in the south Indian

Ocean from 508 to 908E. The IFS forecast was less em-

phatic in this region while also forecasting low chances

of cyclone formation south of Indonesia and into the

Coral Sea. Hence the MME in this case performs worse

than the single ACCESS-S1 forecast.

This trend continued for the two-week forecasts issued

on 10 April. The ACCESS-S1 forecast now predicted the

formation two separate storm systems, one centered

around 508E (with a chance of landfall in Mozambique)

and another centered on 758E. The IFS forecast had a

similar spatial distribution throughout the south Indian

Ocean but with lower forecast probabilities near

Madagascar. Very low probabilities of cyclone for-

mation were forecast throughout Indonesia, Papua

New Guinea, and the Solomon Islands. As with the

three-week forecast, the 2-week MME forecast is in-

ferior to the ACCESS-S1 forecast.

The 10-day forecast issued on 14April shown in Fig. 10

shows little differences between the twoACCESS systems,

although the GE2 ensemble favored a ‘‘split track’’

scenario for Kenneth, forecasting both westward and

southward trajectories. The IFS 10-day forecast showed

a similar spread, whereas the ACCESS-S1 system main-

tained a more zonal distribution of forecast trajectories.

TheMME forecast at the shorter lead time showed slight

FIG. 7. Spatial anomaly plots computed for the (left) ACCESS-S1 system, (center) IFS system, and (right) MME for the 2017/18 and

2018/19 cyclone seasons. The anomalies are computed in 48 boxes. Lead time increases for each row: (top) 8–14, (middle) 15–21, and

(bottom) 22–28 days.

FIG. 8. Spatial anomaly plots computed for various models

with 8–10-day lead times. (top) ACCESS-GE2, (top middle)

ACCESS-S1, (bottom middle) IFS, and (bottom) MME for the

2017/18 and 2018/19 cyclone seasons. The anomalies are com-

puted in 48 boxes.
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changes to the 8–14-day forecast, with increased chances

of storm formation at the northern tip of Madagascar.

6. Discussion and conclusions

Evidence collated over the past two Southern

Hemisphere cyclone seasons shows that skillful, sub-

seasonal forecasts are now possible with the latest gen-

eration of coupled dynamic ocean–atmosphere models.

However, this skill has been assessed at large spatial scales

(i.e., 158 3 208 latitude/longitude). So, while these model

forecasts can predict cyclogenesis locations in subregions

of the Southern Hemisphere, forecasts of specific storm

impacts at such lead times is still beyond reach.

Determining why the IFS has superior skill than both

ACCESS systems is beyond the scope of this study,

as both systems used different storm trackers. Hence it

is impossible to decouple model forecast errors from

storm tracker errors. Both trackers use different mete-

orological variables to identify storms (or proxies of

storm location). The algorithms used to generate storm

tracks also differ (i.e., joining together in time the lo-

cations of points that exceed the predefined meteoro-

logical thresholds). For example, while the ECMWF

algorithm uses the steering winds at a specific point to

look into the future for the next candidate point along

a track, the OWZ algorithm also searches backward in

time, that is, points that are matched by integrating

forward in time are checked by integrating the steering

winds in the later location backward in time to ensure

the two points match.

Nevertheless, there are important differences be-

tween the two models. ACCESS-S1 has a fixed resolu-

tion of N216 (60km), whereas the IFS changes from

N639 (days 1–15) to N319 (days 16–46). It is expected

that higher resolution of the IFS gives it an advantage in

resolving flow gradients associated with small storms,

especially those that form near the coast. In addition, the

OWZ tracking scheme interpolates all data onto a 18 3 18
grid, so as not to track individual thunderstorm systems.

Hence applying the OWZ scheme to higher-resolution

forecasts may not improve tracker performance.

As mentioned previously, the IFS uses a 51-member

ensemble of 4D-VAR forecasts, where each forecast has

perturbations to the observation and background error

covariances. ACCESS-S1 uses only scaled random per-

turbations to generate its ensemble spread. The impact

of data assimilation on second-week forecast skill was

examined by comparing results between ACCESS-S1

and ACCESS-GE2. Recall that both systems used the

same atmospheric model at the same resolution; how-

ever, the GE2 system generated 24 ensemble members

using an ensemble Kalman filter. While GE2 uses fixed

ocean sea surface temperatures (compared to S1, which

FIG. 9. ACCESS-S1, IFS, and MME forecasts for Cyclones Gita and Cebile with (left) 15–21-day lead times initialized on 22 Jan 2018

and (right) 8–14-day lead times initialized on 29 Jan 2018. All forecasts cover the period between 6 and 12 Feb 2018. Observed storm

locations for Gita and Cebile for this period are shown in the bottom panel.
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is coupled to a full ocean model), GE2 was consistently

more skillful across 8–10-day lead times. This is addi-

tionally impressive when considering the GE2 ensemble

size is smaller than S1. This proves that data assimilation

is still an important source of second-week forecast skill

of cyclogenesis.

Ensemble size is also an important factor in forecast

skill, as demonstrated by

1) ACCESS-S1 lagged ensembles forecasts having con-

sistently more reliability than the default forecasts,

2) IFS forecasts having better skill than ACCESS-S1, and

3) theMME having better skill and reliability than both

systems.

However, points 1 and 2 are made on the assumption

that storm tracker errors are not significant.

The impact of the model’s MJO forecasts on cy-

clogenesis is another avenue for investigation. Extra

seasons are required to record sufficient MJO events

to generate robust statistics. Based on the average

periodicity of the MJO (typically defined as 30–60 or

30–90 days) there may only be three MJO cycles

per season. This is an important avenue of further

research as many statistical forecasting schemes use

MJO indices as predictors. If the dynamic models

show the ability to forecast cyclogenesis at subseasonal

time frames with a weak/indeterminate MJO signal,

this represents a significant improvement to forecast

products and services in the region.

Another point of difference is the two different

methodologies used at ECMWF and BoM to deliver

‘‘seamless forecasts’’ between weather and seasonal

forecast time scales. The IFS subseasonal forecasting

system is based on the ECMWF ensemble numerical

weather prediction system. It is the same model (and

initial conditions), iterated for longer lead times and

coarser resolution after 15 days. Hence it can be con-

sidered as an ‘‘extended’’ numerical weather predic-

tion system.

In contrast, ACCESS-S1 is designed primarily for

seasonal prediction, with 11 ensemble members inte-

grated to 210 days. The atmospheric ensemble genera-

tion (scaled random perturbations) is designed more

to generate skillful spread at seasonal lead times. An

additional 22 members (integrated to a lead time

of 42 days) is required to produce forecast skill at

FIG. 10. ACCESS-GE2, ACCESS-S1, IFS, and MME 8–10-day forecasts for (left) Cyclones Gita and Cebile initialized on 2 Feb 2018

and (right) Cyclones Kenneth and Lorna initialized on 12 Apr 2019. Observed storm locations for Gita, Cebile, Kenneth, and Lorna for

these periods are shown in the bottom panels.
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subseasonal time frames. Hence, the subseasonal fore-

casts generated by ACCESS-S1 can be considered as

by-product of a seasonal forecasting system.

An alternative way forward for the Bureau may be to

leverage off ACCESS-GE3, the recently operational

version of GE2. This uses an updated version of the

UKMO GA6.0 at higher resolution (N400, 33 km), us-

ing improved assimilation (hybrid 4DVAR), to generate

10-day forecasts with 18 ensemble members every 6 h.

A lagged ensemble forecast of this system (coupled to an

ocean model) integrated out to 28 days could provide

the best way to deliver seamless forecasts in the multi-

week space.

Determining the factors important for subseasonal

forecast skill of cyclogenesis requires decoupling fore-

cast errors from tracker errors. Such studies are already

ongoing using the S2S database (s2sprediction.net),

where the ECMWF tracking algorithm is applied to

forecasts from several national agencies. Lee et al.

(2018) showed that cyclone forecasting skill is depen-

dent on model MJO forecast skill and climatology bia-

ses, both of which can vary from basin to basin.

The next step in this process would be to determine

forecast uncertainties due to the tracking algorithm and ap-

ply several different trackers to the same model outputs.

Further progress could be made by creating an

MME of forecast anomalies relative to each model’s

climatology. The ECMWF already issues subseasonal

forecast anomalies. While the BoM does issue cali-

brated cyclone forecasts (which rely on an 11-member

1990–2012 hindcast), it has yet to compute a complete

cyclone climatology.

Skillful subseasonal forecasts of cyclone formation

have the potential to provide massive benefits to the

emergency services community by helping with disaster

preparation and planning. There are also benefits to the

commercial sectors and general public to help cope with

supply-chain and transport disruptions. The study showed

that two separate forecast models using two separate

tracking algorithms are both capable of producing skillful

subseasonal forecasts, and forecast skill was further im-

proved by combining both into a multimodel ensemble.

The authors believe that such results should spur the

various national and international agencies responsible

for issuing cyclone forecasts and warnings to commit to

further development and dissemination of such products

to protect lives and infrastructure throughout the region.
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