A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Circular Repetition Thresholds on Some Small Alphabets: Last Cases of Gorbunova's Conjecture

2019
*
Electronic Journal of Combinatorics
*

A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mbox{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or equivalently, there are $k$-ary $\beta$-free words of every sufficiently large length, or even every length). These three equivalent definitions of the repetition threshold give rise to three natural definitions of a repetition threshold for circular

doi:10.37236/7985
fatcat:aut46hzenvf67ac5t4vvob3kba