Data Augmentation Technology Driven By Image Style Transfer in Self-Driving Car Based on End-to-End Learning

Dongjie Liu, Jin Zhao, Axin Xi, Chao Wang, Xinnian Huang, Kuncheng Lai, Chang Liu
2020 CMES - Computer Modeling in Engineering & Sciences  
With the advent of deep learning, self-driving schemes based on deep learning are becoming more and more popular. Robust perception-action models should learn from data with different scenarios and real behaviors, while current end-to-end model learning is generally limited to training of massive data, innovation of deep network architecture, and learning in-situ model in a simulation environment. Therefore, we introduce a new image style transfer method into data augmentation, and improve the
more » ... iversity of limited data by changing the texture, contrast ratio and color of the image, and then it is extended to the scenarios that the model has been unobserved before. Inspired by rapid style transfer and artistic style neural algorithms, we propose an arbitrary style generation network architecture, including style transfer network, style learning network, style loss network and multivariate Gaussian distribution function. The style embedding vector is randomly sampled from the multivariate Gaussian distribution and linearly interpolated with the embedded vector predicted by the input image on the style learning network, which provides a set of normalization constants for the style transfer network, and finally realizes the diversity of the image style. In order to verify the effectiveness of the method, image classification and simulation experiments were performed separately. Finally, we built a small-sized smart car experiment platform, and apply the data augmentation technology based on image style transfer drive to the experiment of automatic driving for the first time. The experimental results show that: (1) The proposed scheme can improve the prediction accuracy of the end-to-end model and reduce the model's error accumulation; (2) the method based on image style transfer provides a new scheme for data augmentation technology, and also provides a solution for the high cost that many deep models rely heavily on a large number of label data.
doi:10.32604/cmes.2020.08641 fatcat:dsaa2jjv35fz7bzk6nfxq46jxu