A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
The Merris index of a graph
2003
The Electronic Journal of Linear Algebra
In this paper the sharpness of an upper bound, due to Merris, on the independence number of a graph is investigated. Graphs that attain this bound are called Merris graphs. Some families of Merris graphs are found, including Kneser graphs K(v, 2) and non-singular regular bipartite graphs. For example, the Petersen graph and the Clebsch graph turn out to be Merris graphs. Some sufficient conditions for non-Merrisness are studied in the paper. In particular it is shown that the only Merris graphs
doi:10.13001/1081-3810.1108
fatcat:22hkamnxqnfstdpvsvarswufdu