Precise error estimate of the Brent-McMillan algorithm for the computation of Euler's constant [article]

Jean-Pierre Demailly
<span title="2017-12-11">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Brent and McMillan introduced in 1980 a new algorithm for the computation of Euler's constant γ, based on the use of the Bessel functions I_0(x) and K_0(x). It is the fastest known algorithm for the computation of γ. The time complexity can still be improved by evaluating a certain divergent asymptotic expansion up to its minimal term. Brent-McMillan conjectured in 1980 that the error is of the same magnitude as the last computed term, and Brent-Johansson partially proved it in 2015. They also
more &raquo; ... ave some numerical evidence for a more precise estimate of the error term. We find here an explicit expression of that optimal estimate, along with a complete self-contained formal proof and an even more precise error bound.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1610.01893v3</a> <a target="_blank" rel="external noopener" href="">fatcat:2nxauh3xnffariacei4emnpbsy</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>