A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Finite Element Modeling of Airflow During Phonation
2010
Applied and Computational Mechanics
In the paper a mathematical model of airflow in human vocal folds is presented. The geometry of the glottal channel is based on measurements of excised human larynges. The airflow is modeled by nonstationary incompressible Navier-Stokes equations in a 2D computational domain, which is deformed in time due to vocal fold vibration. The paper presents numerical results and focuses on flow separation in glottis. Quantitative data from numerical simulations are compared to results of measurements by
doaj:016304ee8ef9458eb76ed623220a9af3
fatcat:oelayguznvf47oqqz4mapezvu4