PERBANDINGAN METODE HOT-DECK IMPUTATION DAN METODE KNNI DALAM MENGATASI MISSING VALUES

Iman Jihad Fadillah, Siti Muchlisoh
2020 Seminar Nasional Official Statistics  
Salah satu ciri data statistik yang berkualitas adalah completeness. Namun, pada penyelenggaraan sensus atau survei, sering kali ditemukan masalah data hilang atau tidak lengkap (missing values), tidak terkecuali pada data Survei Sosial Ekonomi Indonesia (Susenas). Berbagai masalah dapat ditimbulkan oleh missing values. Oleh karena itu, masalah missing values harus ditangani. Imputasi adalah cara yang sering digunakan untuk menangani masalah ini. Terdapat beberapa metode imputasi yang telah
more » ... tasi yang telah dikembangkan untuk menangani missing values. Hot-deck Imputation dan K-Nearest Neighbor Imputation (KNNI) merupakan metode yang dapat digunakan untuk menangani masalah missing values. Metode Hot-deck Imputation dan KNNI memanfaatkan variabel prediktor untuk melakukan proses imputasi dan tidak memerlukan asumsi yang rumit dalam penggunaannya. Algoritma dan cara penanganan missing values yang berbeda pada kedua metode tentunya dapat menghasilkan hasil estimasi yang berbeda pula. Penelitian ini membandingkan metode Hot-deck Imputation dan KNNI dalam mengatasi missing values. Analisis perbandingan dilakukan dengan melihat ketepatan estimator melalui nilai RMSE dan MAPE. Selain itu, diukur juga performa komputasi melalui penghitungan running time pada proses imputasi. Implementasi kedua metode pada data Susenas Maret Tahun 2017 menunjukkan bahwa, metode KNNI menghasilkan ketepatan estimator yang lebih baik dibandingkan Hot-deck Imputation. Namun, performa komputasi yang dihasilkan pada Hot-deck Imputation lebih baik dibandingkan KNNI.
doi:10.34123/semnasoffstat.v2019i1.101 fatcat:qrhehkek4fabzbnioxzfnrptom