A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Regularity of Weak Solutions to the Inhomogeneous Stationary Navier–Stokes Equations
2021
Symmetry
One of the most intriguing issues in the mathematical theory of the stationary Navier–Stokes equations is the regularity of weak solutions. This problem has been deeply investigated for homogeneous fluids. In this paper, the regularity of the solutions in the case of not constant viscosity is analyzed. Precisely, it is proved that for a bounded domain Ω⊂R2, a weak solution u∈W1,q(Ω) is locally Hölder continuous if q=2, and Hölder continuous around x, if q∈(1,2) and |μ(x)−μ0| is suitably small,
doi:10.3390/sym13081336
fatcat:kshgy5az4zg6hbyf2u5qfbmtt4