Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-learning Approaches

Sadaf Safavi, Mehrdad Jalali, Mahboobeh Houshmand
2022 Electronics  
In recent years, location-based social networks (LBSNs) that allow members to share their location and provide related services, and point-of-interest (POIs) recommendations which suggest attractive places to visit, have become noteworthy and useful for users, research areas, industries, and advertising companies. The POI recommendation system combines different information sources and creates numerous research challenges and questions. New research in this field utilizes deep-learning
more » ... s as a solution to the issues because it has the ability to represent the nonlinear relationship between users and items more effectively than other methods. Despite all the obvious improvements that have been made recently, this field still does not have an updated and integrated view of the types of methods, their limitations, features, and future prospects. This paper provides a systematic review focusing on recent research on this topic. First, this approach prepares an overall view of the types of recommendation methods, their challenges, and the various influencing factors that can improve model performance in POI recommendations, then it reviews the traditional machine-learning methods and deep-learning techniques employed in the POI recommendation and analyzes their strengths and weaknesses. The recently proposed models are categorized according to the method used, the dataset, and the evaluation metrics. It found that these articles give priority to accuracy in comparison with other dimensions of quality. Finally, this approach introduces the research trends and future orientations, and it realizes that POI recommender systems based on deep learning are a promising future work.
doi:10.3390/electronics11131998 fatcat:exuhjcsn3rbw5d3xjsw3aykmhe