A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art

Ning Jiang, Thomas Lorrain, Dario Farina
2014 Journal of NeuroEngineering and Rehabilitation  
Current clinical myoelectric systems provide unnatural prosthesis control, with limited functionality. In this study, we propose a proportional state-based control method, which allows switching between functions in a more natural and intuitive way than the traditional co-contraction switch method. Methods: We validated the ability of the proposed system to provide precise control in both position and velocity modes. Two tests were performed with online visual feedback, involving target
more » ... and direct force control in grasping. The performance of the system was evaluated both on a subject with limb deficiency and in 9 intact-limbed subjects, controlling two degrees of freedom (DoF) of the hand and wrist. Results: The system allowed completion of the tasks involving 1-DoF with task completion rate >96% and of those involving 2-DoF with completion rate >91%. When compared with the clinical/industrial state-of-the-art approach and with a classic pattern recognition approach, the proposed method significantly improved the performance in the 2-DoF tasks. The completion rate in grasping force control was >97% on average. Conclusions: These results indicate that, using the proposed system, subjects were successfully able to operate two DoFs, and to achieve precise force control in grasping. Thus, the proposed state-based method could be a suitable alternative for commercial myoelectric devices, providing reliable and intuitive control of two DoFs.
doi:10.1186/1743-0003-11-110 pmid:25012766 pmcid:PMC4108229 fatcat:25g4apjujjaczilzbgsldf6c3i