PENERAPAN ALGORITMA SPECTRAL ANGLE MAPPER (SAM) UNTUK KLASIFIKASI LAMUN MENGGUNAKAN CITRA SATELIT WORLDVIEW-2
Nunung Noer Aziizah, Vincentius Paulus Siregar, Syamsul Bahri Agus
2017
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital
Remote sensing technology has been developed for monitoring and identification of coastal environment and resources, such as seagrasses. In Indonesia, particularly seagrass mapping spectrometer utilizing spectral library has not been done. This study aimed to determine the spectral signature based in situ measurement and image analysis, analyze the implementation of the algorithm Spectral Angle Mapper (SAM) and test accuracy in mapping seagrass to species level based on spectral libraries.
more »
... rch conducted in seagrass Tunda Island, Banten. Satellite imagery used is WorldView-2 and the seagrass spectral reflectance was measured using a spectrometer USB4000. SAM classification algorithm utilizing spectral libraries and classify objects in a single pixel can be homogeneous. Classification results in the form of class Enhalus acoroides, Cymodocea rotundata, Thalassia hemprichii, and Halophila ovalis. The resulting accuracy of 35.6%. The area of each class is 0.8 hectares for the class Cymodocea rotundata, 2.79 hectares for Enhalus acoroides, class Thalassia hemprichii 3.7 hectares, and 3.5 hectares for Halophila ovalis. Classification of seagrass to species level yet produce good accuracy. Seagrass area with a variety of species and number of channels on a multispectral satellite image is assumed to be the cause of the low value of accuracy. AbstrakPemanfaatan teknologi satelit penginderaan jauh (remote sensing) sangat berkembang untuk identifikasi dan memantau sumberdaya alam wilayah pesisir, seperti lamun. Di Indonesia khususnya pemetaan lamun memanfaatkan pustaka spektral dari spektrometer belum banyak dilakukan. Penelitian ini bertujuan untuk mengetahui besaran spektral lamun berdasarkan pengukuran in situ dan analisis citra satelit, memetakan lamun hingga tingkat spesies berdasarkan pustaka spektral pengukuran in situ dengan penerapan algoritma SAM dan menguji tingkat akurasinya. Penelitian dilaksanakan di ekosistem lamun Pulau Tunda, Banten. Citra satelit yang digunakan adalah WorldView-2 dan reflektansi spektral lamun diukur menggunakan spektrometer USB4000. Algoritma klasifikasi SAM memanfaatkan pustaka spektral dan mengkelaskan obyek dalam satu piksel secara homogen. Hasil klasifikasi berupa kelas lamun Enhalus acoroides, Cymodocea rotundata, Thalassia Hemprichi, dan Halophila ovalis. Akurasi yang dihasilkan sebesar 35.6 %. Luas area masing-masing kelas adalah 0.8 Ha untuk kelas Cymodocea rotundata, 2.79 Ha untuk kelas Enhalus acoroides, 3,7 Ha kelas Thalassia hemprichii, dan 3.5 Ha untuk Halophila ovalis. Klasifikasi lamun hingga tingkat spesies belum menghasilkan akurasi yang baik. Area lamun dengan jenis yang beragam dan jumlah saluran pada citra satelit multispektral diasumsikan menjadi penyebab rendahnya nilai akurasi.
doi:10.30536/j.pjpdcd.2016.v13.a2205
fatcat:4h3juxv6gngp7hui7hin7p2d4u