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1. INTRODUCTION The oscillatory properties of a sequence of weak* convergent

functions may be summarized by the parametrized measure, or Young measure, which it generates,

Young [SI]1'2. The parametrized measure generated by a sequence f* € L~(Q;RN) with

£ -» f in L~(G;RN) weak*

is a family of probability measures v = ( v x )* € Q with supp v x c RN such that, for every

function y continuous in X and measurable in x.

V(x) = f*U)dv x (X) inL-(Q) weak*, (1.1)
N

where Q, e Rn is bounded. Restricting, if necessary, to a subsequence, every weak* convergent

sequence generates a parametrized measure. Thus the parametrized measure describes the weak

limit of any continuous function composed with the sequence, which leads to its use in problems

where sequences converge weakly but not strongly. In this framework, every family

v = ( V x ) x € Q of probability measures with uniformly bounded support is a parametrized

measure.

1 Research group Transitions and Defects in Ordered Materials, funded by the NSF and the AFOSR (DMS 87-
18881) and by the ARO (DAAL 03 88 K 0010).

2 To appear in Proc. Nonlinear Diff. Eqns. and their Appln College de France Sem, Bxezis, R and Lions, J.-L., td&.
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Variational principles used to study equilibrium configurations of crystalline solids or other

materials with order are not lower semicontinuous. Our interest in the foundations of this theory

begin with the work of Ericksen, cf. e.g. [27-38]. In these circumstances, the infimum of energy

is attained only in some generalized sense while a minimizing sequence may develop finer and finer

oscillations, reminiscent of a finely twinned microstructure. The weak limit of the sequence may

be inadequate to describe many properties of the configuration, but the parametrized measure has

proven useful both to determine macroscopic properties such as energy and stress and

microstructural properties such as variant arrangement and location, cf. Ball and James [5,6],

Chipot and Kinderlehrcr [18], Chipot, Kinderlehrer, and Vcrgara Cafiforelli [19], Fonseca [42-45],

James [49], James and Kinderlehrer [50], Kinderichrcr [54], Pedregal [72,73], Matos [65,66],

and Battacharya [11,12]. It has also led to computational developments, Collins and Luskin [21-

23], Chipot [16], Chipot and Collins [17], Collins, Kinderlehrer and Luskin [24], Luskin and Ma

[64], and Nicolaides and Walkington [71]. A recent accounting of some of these and related

developments may be found in [39]. In addition, the analysis we discuss here has close

connections with the work of Ball and Murat [8,9], Ball and Zhang [10], Brandon and Rogers

[14], Firooze and Kohn [41], Kohn [62], James and Kinderlehrcr [51-53], Sverak [75-77], and

Zhang [82-84].

The use of the Young measure to study possible oscillations of solutions of partial

differential equations was initiated by Tartar [78-80].

The two immediate difficulties which arise in applying the ideas leading to (1.1) are

• the variational constraint that f* = Vu*, and

• the ( £ ) are not generally bounded in L~(ftRN), but instead in

LP(QJlN), for some p e [1,~),

In this note, we would like to discuss our recent thoughts about these questions. Details appear in

[57]. Our objective is to characterize the gradient Young measures which arise from sequences

bounded in H^POQJtm), 1 < p < «>. We found subtle differences between the cases p < » and

p = oo, and since we have reported on the latter case in [55],[56],[58], we concentrate here on the

case where p is finite. In the remainder of this section we shall introduce the notions we intend to

study and state our prinicpal result, THEOREM 1.1.

As our starting point we recall a more general framework for the study of oscillations
described by Ball [3] and also studied by Matos [65]. We retain the convention that Q c R D i s
bounded (and measurable.) Suppose that f* e LP(QJRN), for some p € [l,oo), and

fklPdx £ M. (1.2)
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Then there is a family v « ( v x ) x € n of probability measures on RN and a subsequence of the

), not relabelled, such that whenever

^ V in iMfk), for ye C(RN),

then

V(x) m fy(X)dvx(X) in Q a.c. (1.3)
RN

For example, it is obvious from Holder's inequality and the Dunford-Pettis criterion that given a

sequence satisfying (1.2), the conclusion (13) is satisfied whenever

ly(X)l S C(1 + IXW), Jl€RN, (1.4)

whenever q < p. However, it is also obvious from the viewpoint of applications that we wish to

have some interpretation of (1.3) when p = q. The subsequence ( fr ) determines a unique

parametrized measure. The problem is to decide when it identifies weak limits.

Since (1.3) does not hold for arbitrary sequences bounded in D\ we must either impose

an additional condition on the sequence or restrict the notion of Young measure as a

characterization of oscillatory behavior. What docs this entail? To begin, we shall neglect the

gradient constraint and then reinstate it later.

For convenience we set

£P « {yeCXMV.limtAi^^ J j * * | p exists). (1.5)

£P is isomorphic to the continuous functions on the one point compactification of M and is

separable. For technical reasons, this has an advantage over the inseparable space of functions

suggested by (1.4) of the same growth rate

X = { y e C ( R N ) : ly(X)l £ CXI

and will incur no loss in generality in our considerations.

A particular circumstance leading to the validity of (1.3) for all y satisfying (1.4) in the

case p = q occurs when I f* IP themselves converge weakly in LKQ). This follows by

application of the Dunford-Pettis criterion and leads us to the notion of p-Young measure:

A family v = (v x )x€f t i s* p-Young measure or p-parametrized
measure provided there is a sequence £ € LP(Q;RN)> for some
pe [l,oo)f anda g€ LHfi) such that
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g inLl (Q) and

v in L^Q), where

Jy(X)dvx(X) in a a.c., for y c £P,
RN

Equi valently»we may say that for any E c f l ,

« JJ NV(X)dvx(X)dx for v^£P. (1.6)

Alternatively, we may define a biting Young measure for an arbitrary sequence. Recall that
if 4 teLl (Q) and

f I g k I dx M < oo,

then there is a sequence Ej c Q with Ej+i c Ej, I Ej I -» 0, and a g € Ll(fl) such that for a

subsequence of the ( g*), not relabelled,

g* -* g inL*(O\Ep forcachj.

This is the conclusion of the Chacon biting lemma [IS], cf. also Ball and Murat [8]. We write that

g* ^ g in Ll(O) (1.7)

andsaythat gk converge to g in the biting sense. Clearly if gk converge in the biting sense and

I y(X) I ^ CIX I, then y(gk) also converge in the biting sense, again by the Dunford-Pettis

criterion. Thus we are led to the notion of biting Young measure:

A family v = (v x )x€D is a biting Young measure provided there is a

sequence f^e LP("^N) and g e L*(Q) such that

If^tP ^ g inLl(a)and

^ y in L^Q) where

in Q a,c.f for y € £P. (1.8)

The bitten sets (Ej) depend only on the sequence (f*) and not on the particular y . Ap-Young

measure is a biting Young measure. Furthermore, evident from the property of weak convergence

in L1, the Young measure determines the biting limit of a sequence and not its distributional limit
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Suppose that \i is a homogeneous biting Young measure, i.e., \ix is independent of x e

ft. We may regard \i as an clement of £P \ the dual of £P, with

t\i\\ = f(l

Even though p is a probability measure, it is not necessarily in the unit ball of EP\ Indeed,

consider the ample example with Q = (0,1)

These f* have the properties that

£ -> 0 inL2((0,l)) weakly and in the biting sense and

I fk I2 do not converge weakly in LK(0,l)),

I ^ P ^ 0.

Fen- any 2

a-j-)v(O).

The limit of these functional defines an operation which is not a probability measure, but the

functional

<T,v) = y(0) + limX^«va)/X2. (1.10)

However the biting limit determines the probability measure 6o which is generated by some

sequence of oscillations in L2((0,l)). Each function fk determines the parametrized measure S^

given by

Iv^dx

In view of (1.10), this shows that the Young measures are not closed in E2'. It is easy to see that

they also are not bounded in the norm (1.9). Conditions which ensure the convergence of a

sequence of measures in £P' to another probability measure are analogous to tightness conditions,

cf.BUiingslcy[13].

Let us now impose the constraint that the functions fk which generate the measures are
gradients. We agree to call the associated measures H^P • Young measures and H^P - biting
Young measures, respectively.
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Recall that a continuous function <p(A), where A c M, the m x n matrices, is quasiconvex
provided

^ 7 f forall $ € C£(G;Rm) andFe M. (1.11)

A result of Acerbi and Fusco [1], which generalizes the theorem of Morrcy [67], is that if <p e £P
is quasiconvex and bounded from below, then

f<KVu)dx £ liminfk_>« f<p(Vuk)dx (1.12)

whenever

i^ -* u in

The proof of (1.12) in this case is a direct generalization of Morrey's and does not require the
machinery developed by Acerbi and Fusco, cf. Evans [40], Dacorogna [25]. In fact, in the case of
linear growth of <p(A), the lower semicontinuity (1.12) remains true even when we assume only
that

u k ,ue HU(Q;Rm) and uk -4 u in 0'(Q).

Deep generalizations of Morrey's Theorem relevant to this situation have recently been proved by
Fbnseca and Miiller [46,47], to whom we refer for additional references.

Assuming Q given, (1.12) also holds for smooth subdomains Q( c Q, in particular
for G' = Br(a) c ft. Suppose that ( V u k ) generate an Hi»P • Young measure v. Then
(1.12) implies that

f<p(Vu)dx < J <j>dx for <p(x) = J<p(A) dvx(A),
B/a) B/a) M

and thus by Lebesgue's Theorem, <p(Vu(a)) £ 9(a) in Q. Expressed differently,

<p(Vu(x)) £ Jcp(A)dvx(A), where Vu(x) = J A dvx(A), (1.13)
M M

whenever q> e £P is quasiconvex and bounded below. So if v is an H^P - Young measure,
Jensen's Inequality holds for quasiconvex <pe £P and bounded below.

Another consequence of (1.12) concerns the Jensen Inequality for biting Young measures
and is not elementary. We know that if q>€ £P is quasiconvex and <p ̂  0,then

J<p(Vu)dx < l i m i n f k ^ - Jq>(Vuk)dx, for E c Q, (1.14)
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whenever u* -* u in H^PtffcR111). This result does require a substantial part of the Acertri -

Fusco apparatus and unfortunately we have been unable to find a simpler proof than, say, [59].

Let v = ( V X ) X € Q denote the biting Young measure generated by (Vu k ) and 9 the biting

limit given by (1.8). Whenever E c Q\Ej, we than have from (1.12) that

J<p(Vu)dx £ J <p dx.

As limlEjl = 0, we find again that

<p(Vu) £ q> in Q a.e.

By adding a constant to <p, this is seen to hold for quasiconvex functions bounded below and by

truncation it is seen to hold for arbitrary quasiconvex functions with growth of order p. This has

been discussed by Ball and Zhang [10] as well. Otherwise stated, for an H1* - biting Young

measure v = ( v x ) x € Q, whenever <pe £P is quasiconvex,

<KVu(x)) fq>(A)dvx(A), where Vu(x) = Udv x (A) . (1.15)
M M

Thus Jensen's Inequality for quasiconvex functions of suitable growth holds for biting Young

measures as well as H1 P - Young measures.

Our principle result is that (1.15) characterizes the Hi* - Young measures. Thus

- Young measures are the same as the H^P - biting Young measures and are the same as the

measures which satisfy (1.15). Of course, the sequence that generates the measure as an H^P -

Young measure cannot usually be the same as an arbitrary one that generates it as a biting measure.

THEOREM 1.1 Let v = ( v a ) a € a be a family cf probability measures in C(M)\ Then

v « ( vx )x € Q is an H^P - gradient Young measure if and only if

i) there is a ue H^P^R"1) such that

Vu(x) = jAdvx(A) inQa.e.,
M

ii) Jensen's Inequality (1.13) holds for all <pe £P quasiconvex and bounded below, and

iii) the function

JIA IP dvx(A) € LUO).JI

The last cemdition is necessary. For example, in the case n « m = l,let ge C(0,l) be

nonnegativc with
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fgdx « ~ and vx « §

Then v satisfies i) and ii) but is not a 1 - Young measure. Analogously in the p = «> case,

we were obliged to assume that usuppv* was bounded. It suffices in ii) to require the Jensen

inequality for the more restricted set of quasiconvex in £P which are bounded below.

For completeness and comparison, we give the H**~ result as well.

THEOREM 12 Letv- (v a )a€Q be a family ofprobabilitymeasures in C(M)\ Then

v = s ( v 1 ) a € n w ^ H1*- - gradient Young measure, or simply, a gradient Young measure if and

only if

i) there is a u € H^tQiR01) such that

Vu(x) = J A dVx(A) in Q a.e.,
M

ii) Jensen's Inequality (1.13) holds for all quasiconvex ye C(M) and

iii) supp va c K, a € Q a.e., where K is a fixed compact.

2. WEAK CONVERGENCE AND BITING CONVERGENCE There is a straight forward way to

understand the relationshiup between weak convergence and biting convergence, which, in fact,

has been used implicitly by us [59] and by Ball and Zhang [10].

PROPOSITION 2.1 Let g^ € L^Q), gk £ 0, with the property that

& ^ g inhHO).

A subsequence ( g* ) qfthe ( gk ) satisfies

& -* g in LH«)

if and only if

liminfk->.. Jgkdx £ J gdx. (2.1)

Moreover, (g*) is weakly relatively compact in L*(Q) tf and only if
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To prove the proposition, assume biting convergence and the failure of the Dunford-Pettis

criterion. This leads to the failure of (2.1).

Consider a biting Young measure V « ( v x )* € Q generated by 1* € LP(Q;RN).

Suppose that <p€ £P majorizes 1 + IXIM.C-, 1 + IX1P £ <p(X),and

l i m k ^ - U(f*)dx = J J qXX)dvx(X)dx (2.3)

Q Q RN

The proposition then implies thai

(24)

whence, by application of the Dunford-Pettis criterion again, v = ( V X ) * 6 Q is a p-Young

measure.

Here is the situation in which we shall apply (23), (2.4). Suppose that |i € £P' is a

probability measure and that f*€ LP(Q),IQI = 1, is a sequence of functions such that

dx = J V(X)dji(X), whenever v € £P. (2.5)

Since we may evaluate (2.S) on (po(X) = 1 + IXtP, the sequence ( f*) is bounded in LP and

generates a biting Young measure v, which we may assume after reseating to be homogeneous,

cf. THEOREM 3.1 in the sequel. We claim that v = |X. This will tell us that \i is a p-Young

measure by (2.3), (2.4). We interpret the left hand side of {25) by observing that

is just the average of the parametrized measure which is the Diracmassat f̂ ,

Thus a probability measure in the closure of the averages of Dirac masses of LP functions is a p-

Young measure which is generated by

To show that |i = v, suppose first that y 2: 0. By the Lebesgue Theorem and the

Monotone Convergence Theorem,

lim
o ^ - { J ̂ (X) dji(X) + f y*(k) d\i(k)

t¥^U <¥>ll
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- f

For a < 1, yf* e E* c £P, q = pa. The sequence ( y ^ f * ) ) satisfies the Dunford-Pettis

criterion and hence is weakly (pre)compact in L*(Q). Thus by (13),

« f ̂ ( ^ d x = £y<*(X) dv(X).

Again by the Lebesgue Theorem and the Monotone Convergence Theorem,

R

Thus |i = v on nonncgative y. By decomposing an arbitrary y into its positive and negative

parts, we deduce that (i = v.

An important observation is that if the sequence f* = Vuk above is a sequence of

gradients, then \i is an H^P-Young measure. We have shown

PROPOSITION 2.2 Suppose that \i e £P* is a probability measure and that f* € LP(Q;RN),

IQI = 1, is a sequence cffunctions such that

lim k ->« J yCf*) dx = J v(X) d î(X), whenever y € £P. (2.5)

Then \i is a p-Young measure. If the f* = Vuk are gradients, then \i is an H^P - Young

measure.

For completeness we give the corresponding L~ result

PROPOSITION 2.3 Suppose that \i € C(RN)f is a probability measure and that fr €

L-(Q;RN), IQI s 1, fe a sequence cf functions such that

- f CXRN).(2.6)

measure. If the ^ « Vuk are gradients, then \i is an H1*- - Young

measure, or simply, a gradient Young measure.

A consequence of (2.6) is that for each y e C(RN),

supk I fyCf^dxl < 4oo. (2.7)

Suppose that l imk-^-supl^l = -H». We may suppose without loss in generality that
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Ek = ( l £ l 2 k ) has measure lEfcl = cxk > 0.

Let <p e C(R+) be any monotone function satisfying

lim k - > ~ akqKk) « ~.

Then

-* J v«G
Q

which violates (2.7). This argument also shows that supp |i = K is compact.

Thus the sequence ( f* ) is bounded in L - and generates a Young measure> which, it is
easy to check, is \i.

3. STRUCTURE OF H1^ - YOUNG MEASURES Recall the convention that

£P - { v c C O ^ i l i n n A i ^ ^ ^ ^ ^ exists}. (3.1)

The homogeneous H^P - Young measures are contained in EP.

Let v = ( V X ) X € Q bean H1* - Young measure. Note that

£P. (3.2)

The average v of v is also a measure. It is given by

< v, V®C> « r o i y R N V ( A ) d V x ( A ) d x IQW*>»»* ^€ LH«X V^ £P. (3.3)

THEOREM 3.1 Assume that IdQI = 0. Let v 6* an H 1 * - Young measure with
underlying deformation y(x) satisfying y j ^ « yo»wh^re yo isaffine. Then v defined by

(33) is ateo an H^P - Koung measure.

We sketch the proof of this basic fact Let (Vuk ) generate v. It is elementary to check that we
may assume that I^JJQ S yo andthat yo(x) « F©x, F o € M. For each j , the collection of sets

{ a + e&: a e Ctfe < l/j } forms a Vhali cover of D frcwnwWch we may extract a countable (or

finite) subcover { ai + eift: aie Q,ei < lfi } of pairwise disjoint sets such that

u N , INI « 0. (3.4)
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Assume that IQI = 1. Let j = k in (3.4) and set

J*» - j «•**?» • « * "«**> (3.5)
I Fox otherwise

For y e £P and ( fr

f V(Vu*(x)) C(ai + eix) dx

f V(Vuk(x)) dx X e? C(ii

for a choice of fii e ai + EiQ. Since ( V u k ) generate the H1^ - Young measure v and the
second term is a Riemann sum for the integral of £.

^ fv(Vuk(x))

Jv(A)dv Udx.

Thus (2.5) is satisfied for the measure v and the sequence (Vy k ) so the conclusion follows

from PROPOSITION 2.2.

As a parenthetical remark, we note that the construction above produces any homogeneous

Young measure as a "self-similar" structure, but that this is quite different and not equivalent to

being a "laminar structure", Pedregal [73], Sverak [77].

For fixed p, 1 < p < «, let Afp denote the set of homogeneous H*'P - Young

measures with first moment F, i.e.,

A dv .

PROPOSITION 3.2 A#F Is convex.
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This is a consequence of the averaging theorem. As before, suppose that IQI « 1.
Given v, v1 € MF and x, 0 < t < 1, choose a subset Qf c ft with smooth boundary and
IQM « x. If ( u k ) generate v and ( u * ) generate v \ one may choose a sequence of cut-off
functions t>3 and a subsequence kj of the k so that

generate the H^P • Young measure \i = (M*)*€n given by

f
v x € Q \ Q' *

Since the underlying deformation of \i is y(x) « Fx, which is affine, £ is again an

Young measure. Inspection shows that

jl = ( l - t ) v + t v f .

Notcthatfor V€ Afp goieratedby (Vuk),thefOTnula

Jy(A)dv = l i m k - > - (v(Vuk)dx, y € FP,

is a special case of the definition, eg., (1.6). Hence the special H^P - Young measures

u j 3 a = Fx, are dense in MF. That is, the averages of Dirac

masses (with underlying deformation Fx) are a special class of H1 >P - Young measures dense in

4. THE HOMOGENEOUS CASE We use the Hahn-Banach Theorem. Suppose that |X € £P*

is a probability measure for which

<p(F) £ Jq>(A)d^(A), where F = jAd*i(A), (4.1)

whenever <p e EP is quasiconvex.

Let T be a linear functional on EP1 in the weak41 topology such that T £ 0 oa Mp> a convex
set Then there isa y e £P such that

}0 <S <T,v) = < v , V ) « }y(A)dv(A), V € M F . (4.2)
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In particular, (4.2) holds for v = Fv* u e H^ftR™), u j ^ = Fx,thatis

0 £ U(Vu)dx, u € Hl.P(Q*m)f u | d Q = Fx. (4.3)

Let V* denote the quasiconvexification or relaxation of y. Thus, assuming that IQI « 1,

V*(F) = infA U ( V u ) d x ,

A = { u e Hl-P(Q;Rm): u j ^ = Fx } .

Additional details about y* and its relationship to V may be found in Dacorogna [25] or [59].

By (4.3), V*(F) ^ 0. Note that v* ^ V- Thus by (4.1),

Jv#(A)d^(A) £ J

Thus }i cannot be separated from Afp. It follows from the separability of FP and the density of

the averaged Dirac masses that there is a sequence v^e A such that

J V(A)dji(A) = limk->~ JyCVu^dx foranyyeFP.

By PROPOSITION 22, \i is an H^P - Young measure.

As we remarked earlier, by truncation it suffices to assume (4.1) for quasiconvex
functions <p e £P which are bounded below.

The general case of THEOREM 1.1 is proved from the homogeneous one by covering

lemmas and approximation. This requires that

JJMIAPdvx(A)dx < +oo.

For details, we refer to [57].

In the proof of THEOREM 1.2, it is necessary to retain the framework of the (inseparable)
locally convex space C(M) and C(M)\ cf. [55]. An interesting part of the argument involves
truncating a sequence uk e H1**^;!^) to a unfonnly bounded one which generates the same
Young measure. This is accomplished with the aid of a generalization of a lemma of Zhang [83],
itself derived from [2],[63], cf. [55] Proposition 5.3:

LEMMA 4.1 Let u € C~(Q;Rm) and L > 0. Then there is a w e H*'~(Q3tm) such that
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{IVul

where C\ and C2 depend only on n and m.

Note that Vw = Vu in { w = u }.

JlVuldx + J l u l d x } , (4.5)

5. SOME APPLICATIONS We give a few ample applications. Let y e C(M) satisfy

cmax(IAP\0) £ y(A) * C(l + IAP), A e M , (5.1)

where 1 < p < «> and consider the functional

¥(v) m Jv(Vv)dx (5,2)

for v € A = uo + H^p (Q*m ) , with Uo given.

THEOREM 5.1 // v satisfies (5.1), then the problem

minA TO

admits a minimizing sequence uk e A ^uc/i tfiar (I Vu* P) is weakly convergent in l*l(Q).

The proof is a direct application of THEOREM 1.1. An arbitrary minimizing sequence is
bounded in Hl>P(Q;Rm) and thus determines a biting Young measure on £P. By the theorem,
the biting Young measure is an H^P - Young measure which is generated by a sequence obeying
the conclusion of THEOREM 5.1. The conclusion of die theorem fails when p = 1, as is well
known. Recent results about the relaxaticm of functionals with linear growth are due to Dal Maso
[26] and Fonseca and Miiller [47].

THEOREM 5.2 Let <p be quasiconvex satisfy

0 £ <p(A) £ C(l + 1AIP).

/ / u* -* u in lfr*(QjK*) and

Jip(Vuk)dx -> ffp(Vu)dx as k -» oot
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then

9(Vuk) -*> <p(Vu) in L*(G).

Let v = ( v x ) x € n denote the biting Young measure generated by (Vuk). Then there is
another sequence ( V w k ) bounded in LP(Q) which generates v = ( v x ) x € n asan H 1 * -
Young measure. Let

9(x) - J<p(A)dvx(A).
M

By Jensen's Inequality, <KVu) <, <p. Let ( Ej) denote the bitten sets from the Biting Lemma.

Then

f<p(Vuk)dx £ fq>(Vuk)dx -» f 9 d x

Hence, letting k -> 00 and then >-» », we see that

fcp(Vu)dx ^ f ^ d x .

From Jensen's Inequality quoted above, we deduce that <p(Vu) = 9. Now we have that

<p(Vuk) ^ <p(Vu) in L*(Q) and

limsupk-*« Jq>(Vuk)dx = limk-• - f9(Vuk)dx = f(p(Vu)dx.

The conclusion now follows from PROPOSITION 2.1. A direct proof of this was given in [59].

As a special case of this theorem, we give another proof of Mailer's observation about

weak continuity of det Vu in the limit case where u e H!>n(Q;Rn), Q c Rn, cf. Coifman,

lions, Meyer, and Semmes [20], Iwaniec and Sbordooc [48], and Miiller himself [69,70].

COROLLARY 5.3 Let u,uk€ H ^ Q * 1 1 ) , Q c Rn
f satitfy

1^ -^ u in H^ftR1 1) and

detVuk ^ 0 in CL

Then

det Vi* -^ detVu in ^
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To verify this, first note thai since u* -* u in H^QJfc11), it is elementary to verify by
integration by parts that

det Vuk -* detVu in j

In particular

J 0 for 0 £ (c ^

so dctVu £ 0 in Q.

Let <p(A) = max( det A,0), a quasiconvex function satisfying

0 £ <p(A) < C(l + IAP), A e M .

Fran the above, <p(Vuk) = det Vuk and <p(Vu) = det Vu. For any smooth subdomain tX c
O, choose a Lipschitz cut-off function r\ with T\ = 1 in Q1. Then

«o JdetVukdx ^ limk->~

J t i d e t V u d xJ

J det Vu dx + f x\ det Vu dx (5.3)

Choose a sequence ( T|i) with rp —̂  0 pointwise in Q\Q*. By the dominated convergence
theorem the second integral in (S.3) tends to zero, so we obtain that

limsupk->« J d e t V u k d x S f d e t V u d x

The conclusion follows from THEOREM SSL
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