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Abstract—Glycans are molecules made from simple sugars that form complex tree structures. Glycans constitute one of the most

important protein modifications and identification of glycans remains a pressing problem in biology. Unfortunately, the structure of

glycans is hard to predict from the genome sequence of an organism. In this paper, we consider the problem of deriving the topology of

a glycan solely from tandem mass spectrometry (MS) data. We study, how to generate glycan tree candidates that sufficiently match

the sample mass spectrum, avoiding the combinatorial explosion of glycan structures. Unfortunately, the resulting problem is known to

be computationally hard. We present an efficient exact algorithm for this problem based on fixed-parameter algorithmics that can

process a spectrum in a matter of seconds. We also report some preliminary results of our method on experimental data, combining it

with a preliminary candidate evaluation scheme. We show that our approach is fast in applications, and that we can reach very well de

novo identification results. Finally, we show how to count the number of glycan topologies for a fixed size or a fixed mass. We

generalize this result to count the number of (labeled) trees with bounded out degree, improving on results obtained using Pólya’s

enumeration theorem.

Index Terms—Computational mass spectrometry, glycans, parameterized algorithms, exact algorithms, counting trees.
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1 INTRODUCTION

GLYCANS are besides nucleic acids and proteins, the third
major class of biopolymers and are built from simple

sugars. Glycans may occur attached to proteins or lipids, or
as free oligosaccharides in the cell plasma. Since simple
sugars can have up to five linkage sites, glycans are
assembled in a tree-like structure.

The elucidation of glycan structure remains one of the
most challenging tasks in biochemistry, yet the proteomics
field cannot be completely understood without these
important post-translational modifications. Apweiler et al.
[1] estimated that more than 50 percent of all eukaryotic
proteins are glycosylated, i.e., carry a glycan modification.

One of the most powerful tools for glycan structure
elucidation is tandem mass spectrometry (MS) [2], [3]. MS is
a technology, which in essence allows to determine the
molecular mass of input molecules. Because of its speed and
accuracy, it has become a prime technology for the analysis
of proteins, metabolites, and glycans. Put in a simplified
way, the input of the experiment is a molecular mixture and
the output a peak list, a list of masses and their intensities. In
tandem MS, we select one type of molecules in the sample,
fragment these parent molecules, and measure the masses of
all fragments. Ideally, each peak should correspond to the
mass of some sample molecule fragment, and its intensity to

the frequency of that fragment in the mixture. The situation
is, in fact, more blurred due to noise and other factors.
Tandem MS can provide general structural information
about the glycan, in particular its topology that can be
represented as a labeled tree (see Fig. 1). Glycan mass spectra
can be interpreted by searching a database of reference
spectra [4], [5], but such databases are vastly incomplete.
Glycan sequencing is more difficult than peptide sequencing
in the sense that we try to resolve a tree structure instead of a
linear string. Unlike peptide sequencing, the alphabet of
monosaccharides (the glycan building blocks) can differ
depending on the type of glycan we are analyzing.

In this paper, we focus on the problem of de novo
interpretation of glycan tandem MS data relying on neither
a database nor biological background knowledge about
possible glycan structures. This is particularly useful for
free oligosaccharides not attached to a protein, O-linked
glycans, or bacterial membrane glycans, where biological
background knowledge offers little help to reduce the space
of possible structures. But our method can also be applied if
biological knowledge strongly restricts this space as in the
case of N-linked glycans. For example, we can use
biological restrictions to filter out candidates after candidate
generation, see below.

Recent approaches for de novo interpretation of tandem
MS data usually build on two analysis steps, the first step
being candidate generation (filtering) and the second step
being candidate evaluation [6]. We perform the first step to cut
down the huge number of topologies we have to consider. A
good candidate generation algorithm will generate a small
set of candidates, but will not miss the correct interpretation.
During candidate evaluation, we only have to consider a
small set of candidates, and decide which of these candidates
best fits the measured data. For glycans, a naı̈ve approach to
generate candidates is to decompose the parent mass of the
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glycan over the alphabet of monosaccharides [7], and then, to
enumerate all topologies that have the correct multiplicities
of monosaccharides. If glycans become larger, or if we
analyze glycans that have a diverse branching structure,
we either have to artificially restrict our search space [8], or
we need a smarter way to generate candidates.

Both candidate generation and candidate evaluation rely
on certain scoring schemes, that are usually less sophisti-
cated for candidate generation because of running time
constraints. Recent approaches for tandem MS interpreta-
tion typically use scoring schemes that are elaborate
modifications of the peak counting score, where one simply
counts the number of peaks that are common to sample
spectrum and candidate spectrum [9]. Shan et al. [10]
established that generating glycan topology candidates
while avoiding peak double counts is an NP-hard problem.
Existing approaches for glycan candidate generation can be
subdivided into three categories: Some approaches enumer-
ate all possible glycan topologies of the given parent mass
[8], [11] and have to use very strict biological rules to cut
down on the number of candidates, or enumerate all
topologies that fulfill such strict biological rules [12]. Other
tools use dynamic programming but simply ignore the
problem of multiple peak counting caused by several
glycan sub-topologies of the same mass [13]. Finally, Shan
et al. [10] present a heuristic that avoids peak double
counting. Note that many other approaches exist for glycan
identification using MS, such as glycan identification by
single-stage MS [5], [14], combining single-stage MS and
tandem MS data [15], assimilation by MSn fragmentation
pathways [16], programs aiding an expert in identifying the
correct glycan topology [17], or database searching tools
such as the commercial program SimGlycan. We omit
further details.

Here, we present a method that solves the candidate
generation problem while at the same time avoiding multiple
peak counting. Although the corresponding problem is NP-
hard, we present an exact method that allows to process a
glycan tandem mass spectrum in a matter of seconds, and
guarantees that all top-scoring candidate topologies are
found. Our algorithm is fixed-parameter tractable [18],
where for our theoretical analysis, the parameter k is the
“number of peaks in the sample spectrum.” In practice,
parameter k can be chosen arbitrarily and allows us to tune
the methods, trading specificity for running time and

memory consumption. We report some preliminary results
on experimental data, showing that our candidate generation
performs well in practice. We show that solving the simpler
candidate generation problem, where one allows multiple
peak counting, usually leads to poor results. We also report
some preliminary results of our candidate evaluation.

We then consider the problem of counting glycan
topologies and, more general, counting rooted trees with
bounded degree. These trees may be labeled, meaning that
each vertex has a usually nonunique label from a finite set.
We present an algorithm with running time Oðn3Þ for
counting all glycan topologies with n vertices, and then,
solve the related problem of counting glycan topologies for
a given mass m. Our method can be easily generalized to
rooted trees of bounded out degree d, resulting in a simple
algorithm with running time Oðd2n3Þ.

2 PRELIMINARIES

The general concept of tandem MS is to filter a single ion
species in a first mass analyzer, then fragment these ions,
and finally determine the masses of the resulting fragments
in a second analysis unit.1 For glycans, collision-induced
dissociation (CID) is often used as fragmentation technique,
where the ions collide with an inert gas for fragmentation.
The collision energy determines the collision strength. The
higher the energy, the more and stronger atomic bonds
break. Since glycosidic bonds between sugars are weak
compared to bonds inside the monosaccharides, we can
choose the energy so that mainly these bonds break.

There are three types of fragmentation that break the
glycan topology, resulting in six types of ions [19], (see Fig. 1):
X, Y, and Z-ions correspond to fragments that contain the
monosaccharide attached to the peptide and are called
reducing end ions or reducing end fragments. A, B, C-ions, in
contrast, do not contain this monosaccharide. A and X-ions
are cross-ring fragments that result from internal mono-
saccharide breakages; the exact breakage positions are
denoted by an additional superscript. Using low-collision
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1. In fact, MS does not filter one particular ion species but instead, selects
a certain mass-over-charge range of ions. This can be a problem in glycan
analysis, as there may be isomers, that is, compounds with the same
molecular formula but different structural formulas. We will not address
this problem in our presentation but instead, assume that a single ion
species has been filtered.

Fig. 1. (left) Topology of a glycan made from three monosaccharides and (right) fragments resulting from tandem MS analysis. Note that the topology
of a glycan does not contain information about exact linkage positions.



energies, we predominantly generate B and Y ions, so we
concentrate on these two types in our presentation.

Masses of molecules are measured in “Dalton” (Da),
where 1 Da is approximately the mass of a neutron. We will
often assume integer masses in our presentation for the sake of
clarity. Accurate masses will be used in the scoring scheme.

We model a glycan topology as a rooted tree T ¼ ðV ;EÞ,
where the root is the monosaccharide attached to the peptide.
Tree vertices are labeled with monosaccharides from a fixed
alphabet �, where � depends on the biological background
of the experiment. Every vertex has an out degree of at most
four, because each monosaccharide has at most five linkages.
Every element g 2 �, and hence, every vertex in the tree T is
assigned an integer mass �ðgÞ. This is the mass of the
monosaccharide g, minus 18 Da for the mass of H2O removed
in binding. A fragment T 0 of T is a connected subtree, and the
mass of T 0 is the sum of masses of the constituting vertices.
Let M :¼ �ðT Þ be the parent mass of the glycan structure. To
simplify our presentations, we ignore mass modifications,
such as adding the terminal H2O group, reducing end
modifications, or the proton mass. These modifications can
be easily incorporated into the presented methods.

If we restrict ourselves to simple fragmentation events,
then fragmentation of the tree means removing a single edge.
Hence, we can represent each simple fragmentation event by
a vertex v 2 V , where the subtree T ðvÞ induced by v
represents the nonreducing end fragment, and the remain-
der of the tree is the reducing end fragment. The resulting
nonreducing end fragments have the mass of a subtree of T
induced by a vertex v, denoted as �ðvÞ. For reducing end
fragments, we subtract �ðvÞ from the parent mass M.

Our method will take into account all possible glycan
topologies, deliberately ignoring all biological restrictions
on, say, the amount of branching in the tree. It is well
known that certain branching types are observed seldom in
biological samples. For example, most monosaccharides
show only one to three linkages. But instead of completely
forbidding such structures, we prefer to incorporate
biological restrictions into our scoring model, by subtract-
ing a penalty if a structural rule is violated. In this way, we
do not impede the discovery of rare structures that may
diverge significantly from structural restrictions.

Our algorithm uses the concept of fixed-parameter tract-
ability (FPT) [18]. This technique delivers exact solutions for
an NP-hard problem in acceptable running time if the
problem can be parameterized. That is, in addition to the
problem size n, we introduce a parameter k of the problem
instance, where typically k� n. A parameterized algorithm
then restricts the superpolynomial growth of its running
time to the parameter k, whereas the running time is
polynomial in the problem size n. Example parameters are
the size of the output or structural features of the input such
as the tree width of graphs. Here, the problem size is the
parent mass M, whereas k is the number of (intense) peaks
in the sample spectrum.

3 CANDIDATE GENERATION

In this section, we address the problem of candidate
generation: given the experimental data, we want to generate
a small set of candidate glycan topologies, containing
the correct topology. This step can be seen as a filter, where

the huge number of possible topologies is reduced to a small
set of, say, hundred candidates that we will study in more
detail. To generate these candidates, we first have to define an
objective function or score, such that candidates that agree
well with the experimental data also receive a high score. We
then show how to find the candidate topology with maximal
score and at the end of the section, a set of suboptimal
candidates. Note that we deliberately use a very simple score
in our presentation, for the sake of lucidity. A scoring that
takes into account realistic experimental considerations, will
be presented in Section 5.

Assume, we have given a topology T and we want to
evaluate T against the sample mass spectrum. Given T , we
can use some simple fragmentation model to generate a
hypothetical candidate spectrum, and use an additive scoring
scheme to rate the candidate spectrum against the sample
spectrum. The scoring is required to be additive, so that
optimal solutions can be assembled from optimal solution
of subproblems using dynamic programming. Let fðmÞ be
the score, we want to assign if a peak at mass m is present in
our candidate spectrum. In its simplest incorporation, f is
the characteristic function telling us if a peak is present in
the sample mass spectrum at mass m. Then, summing fðmÞ
over all peak masses m in the candidate spectrum, we count
all peaks that are common to both the sample spectrum and
the candidate spectrum. To this end, fðmÞ is often referred
to as peak counting score. We can also take into account
expected peaks that are not present in the sample spectrum,
by defining fðmÞ ¼ þ1, if a peak at mass m is present in the
sample spectrum, and fðmÞ ¼ �1 otherwise. Of course, for
experimental data, we use more involved scoring taking
into account, say, peak intensities (see Section 5).

To simplify our presentation, let us assume for the
moment that all our mass spectra consist of nonreducing
end ions only. It turns out that the general case is a simple
generalization of this model. Let T ¼ ðV ;EÞ be a labeled
tree. Shan et al. [10] introduce the scoring model
S0ðT Þ :¼

P
v2V fð�ðvÞÞ, which unfortunately is not a peak

counting score. Instead, for every subtree T 0 of T with mass
m0 ¼ �ðT 0Þ, we add fðm0Þ to the score. In this way, a tree
that contains many subtrees of identical mass m0 receives a
high score, if fðm0Þ is large, even if it ignores all other peaks.
We will show below how computations for this model can
be transferred over to peak counting scores though.

To find the labeled tree T that maximizes the score S0ðT Þ,
we define S0½m� to be the maximal score of any labeled tree
with total mass m. It is easy to see that S0 can be computed
by the recurrence

S0½m� ¼ fðmÞ þ max
m1þm2þm3þm4þ�ðgÞ¼m

S0½m1� þ S0½m2�

þ S0½m3� þ S0½m4�;
ð1Þ

where the maximum is taken over all g 2 � and 0 � m1 �
m2 � m3 � m4 � m [10]. The term S0½m� corresponds to a
subtree with a monosaccharide at its root. We initialize
S0½0� ¼ 0: If one of the mj in (1) equals zero, then the
monosaccharide at the root of the subtree has less than four
bonds. The maximal score of any glycan topology is S0½M�
and we can back trace through the array S0 to find the
optimal labeled tree. Shan et al. simplify (1) to
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S0½m� ¼ fðmÞ þmax
g2�

max
m1¼0;...;

m��ðgÞ
2b c

S02½m1�

þ S02½m� �ðgÞ �m1�;
S02½m� ¼ max

m1¼0;...; m
2b c
S0½m1� þ S0½m�m1�:

ð2Þ

The termS02½m� corresponds to a “headless” subtree without a
monosaccharide at its root (see Fig. 2). Using (2), we can
compute S0½M� in time Oð �j j �M2Þ. Equations (1) and (2) can
easily be modified to take into account properties of the
monosaccharide g, such as the number of links of g for the
scoring.

An exact algorithm for the peak counting problem. Recall that
we actually want to compute the peak counting score
SðT Þ :¼

P
m¼0;...;M fðmÞ � gT ðmÞ, where gT ðmÞ is the char-

acteristic function of the labeled tree T . If T contains one or
more subtrees T ðvÞwith mass �ðvÞ ¼ m, then gT ðmÞ ¼ 1 and
gT ðmÞ ¼ 0 if no such subtree exists. Shan et al. [10] show
that the following problem is NP-hard:

Glycan peak counting problem. Given a monosaccharide
alphabet �, a sample scoring function fðmÞ and a parent
mass M, find the glycan topology T of mass �ðT Þ ¼M
that maximizes SðT Þ.

We now modify recurrences (2) to find the labeled tree T
that maximizes SðT Þ. To this end, note that the complexity
of the problem only holds for mass spectra that contain a
“large” number of peaks. But sample spectra are relatively
sparse and contain only tens of peaks that have significant
intensity. The number of simple fragments of a given glycan
topology is only linear to its number of monosaccharides.
Let k be the number of peaks in the sample spectrum. Here,
k is the parameter of our problem, and we limit the running
time explosion to this parameter, while maintaining a
polynomial running time with respect to M. Choosing k as
the number of peaks is solely done for the ease of
presentation of our theoretical results. In the next sections,
we show that parameter k can be arbitrarily chosen in
application, trading specificity for running time and
memory consumption of the method. For low k, the method
produces more candidates that have a high score because of
scoring peaks multiple times. In our evaluation in Section 6,
we find that a moderate k such as k ¼ 10, leads to fast
running times, in practice, but also generates only a
moderate number of candidates.

In order to avoid multiple peak counting, we incorporate
the set of explained peaks into the dynamic programming.
This technique has been used frequently in algorithmics,

see, for example, [20]. Let C� be the set of peak masses in the
sample spectrum, where C�j j ¼ k. For every mass m �M
and every subset C � C�, we define S½C;m� to be the
maximal score of any labeled tree T with total mass �ðT Þ ¼
m where only the peaks from C are used to compute this
score. At the end of our computations, S½C�;M� holds the
maximal score of any labeled tree, where all peaks from C�

are taken into account for scoring. We now modify (2) for
our purpose. We define S2½C;m� to be the score of a
“headless” labeled tree with mass m using peaks in C.
Using S2, we can restrict the branching in the tree to
bifurcations. We limit the recurrence of S½C;m� to two
“headless” subtrees with disjoint peak sets C1; C2 � C,
where C1 is the subset of peaks explained by the first
subtree and C2 is the set of peaks explained by the second
subtree. We require C1 \ C2 ¼ ; what guarantees that every
peak is scored only once. Additionally, we demand
C1 [ C2 ¼ C n fmg. Clearly, sets C that contain masses
bigger than m need not be considered. We obtain the
following recurrences:

S½C;m� ¼ max
g2�

max
m1¼0;...;

m��ðgÞ
2b c

max
C1�Cnfmg

�
fðC;mÞ þ S2½C1;m1�

þ S2

�
C n ðC1 [ fmgÞ;m� �ðgÞ �m1

��
;

S2½C;m� ¼ max
m1¼0;...; m

2b c
max
C1�C

S½C1;m1� þ S
�
C n C1;m�m1

�
:

ð3Þ

Note that we delay the scoring of a peak at mass m, if m is
not in C by extending the scoring function to fðC;mÞ. If
m 62 C but m 2 C�, then fðC;mÞ ¼ 0. Otherwise, set
fðC;mÞ ¼ fðmÞ. So, both peaks not in C� and peaks in C
are scored, whereas scoring of peaks in C� n C is delayed.

We now analyze time and space that is needed for the
computation of (3). One can easily see that the space
required to store S½C;m� is Oð2k �MÞ. Using sparse
dynamic programming, memory requirements tend to
be much smaller in applications see Section 4. The time
complexity for calculating the optimal solution increases
by a factor of 3k reaching Oð3k � �j j �M2Þ, as there are
3k possibilities to partition k peaks into the three sets C1,
C2, and C� n ðC1 [ C2Þ. The exponential running time
factor can be reduced to 2k [21], but the practical use
seems to be limited due to the required overhead.

Theorem 1. The GLYCAN PEAK COUNTING problem for
monosaccharide alphabet �, k peaks, and parent mass M can
be solved in time Oð3k � �j j �M2Þ and space Oð2k �MÞ.
Running time can be reduced to Oð2k � �j j �M2Þ using fast
subset convolutions.

Recall that we have limited our computations to the case,
where only nonreducing end ions are present in the mass
spectra. But whenever we generate a nonreducing end ion,
then the corresponding reducing end ion must also be
present in the mass spectrum for perfect data. We incorpo-
rate reducing end ions into the computation by “mirroring”
the spectrum in a preprocessing step. We subtract all sample
peak masses m from the parent mass M and insert the new
mass M �m into the spectrum. If a peak is already present,
the intensities (or scores) can be added since this positively
scores the presence of both reducing end and nonreducing
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Fig. 2. In (1), we compute the score for appending up to four previously
computed subtrees to one monosaccharide the root. Equation (2)
reduces the complexity of the computation by appending two “headless”
subtrees, which in turn consist of two subtrees each, to the root
monosaccharide.



end ion. The spectrum now contains reducing end and
nonreducing end peaks with same intensity for every
observed peak even if only one was detected by the
instrument. In consequence, we have to be careful that only
one of the reducing and nonreducing end ion is scored. This
is easily done by regarding the elements in C� as colors and
assigning corresponding reducing end and nonreducing end
ion peaks the same color. In practice, the mass of a reducing
end ion is often not decomposable, if regarded as nonredu-
cing end ion mass because of the reducing end modification,
and will not be considered for the score anyway.

To recover an optimal solution, we back trace through
the dynamic programming matrix starting from entry
S½C�;M�. It is obvious that the maximal score will explain
as many peaks as possible, but not necessarily all. More
interestingly, we can also compute all solutions that deviate
at most � from the score of the optimal solution. This is done
using recursive backtracking and allowing suboptimal
scores in every backtracking step. We attach an error
variable d to every partial solution generated. This variable
d records the current deviation of the partial solution from
an optimal solution and is updated in every backtracking
step. If d > �, then the partial solution can be discarded. To
generate a candidate set of reasonable size for subsequent
analysis, we can iteratively adjust the parameter �. Back-
tracking usually generates many isomorphic trees, which
we remove from the final output. We can do so by encoding
trees as strings, we omit the simple details. Running time of
backtracking is Oðout � 2k �MnÞ, where n is the maximal size
of a glycan topology in the output and out is the number of
generated trees including isomorphic trees, that is usually
larger than the size of the final candidate set.

4 ALGORITHM ENGINEERING AND HEURISTICS

In this section, we present several modifications to the
algorithm from the previous section, to make it run fast in
application. We show how to make computations “sparse”
both with respect to subsets C � C� and masses m �M. We
also show how to swiftly process spectra that contain more
than, say, ten peaks.

We usually do not add penalties for additional peaks that
are not explained by our glycan, see the next section for a
justification. Doing so, we can completely ignore additional
peaks in our computation, and we have to compute S½C;m�
and S2½C;m� only for those sets C � C� that do not contain
any additional peaks. This can be efficiently implemented by
using hash maps to store these values and by restricting (3)
to initialized entries. In this case, we have to start back
tracing from the maximal entry S½C;M� with C � C�.
Furthermore, when computing (3), sets C containing masses
bigger than the current mass m need not be considered.

In case, the number of peaks in a glycan mass spectrum is
too large, we can easily limit the exponential growth in
memory and running time by choosing an appropriate k
such as k ¼ 10. Now, we use the k most intense peaks C� in
our explanation at most once, whereas we allow all other
peaks to contribute multiple times to the score. As our results
show, this is usually not a problem for candidate generation.

Using these engineering techniques, the prohibitive
factor in the running time becomes M2. We note that many

masses m are not decomposable at all over the alphabet of
monosaccharide masses. We can exclude these masses from
our computation since there exists no subtree, which could
explain them. A similar argumentation shows that the mass
remainder M �m must also be decomposable over the
alphabet of monosaccharide masses, so we can also exclude
many masses close to M from our computations. Doing so,
we again reduce running time and memory requirements of
our algorithm in practice.

5 SCORING FOR CANDIDATE GENERATION

We noted that the scoring presented above is overly
simplified, what was done to ease the presentation. We now
describe some modifications that are needed to achieve good
results on experimental data. Here, we take into account real-
valued masses, mass deviations, and peak intensities. As
noted above, our scoring has to be a simple additive scoring to
allow for dynamic programming and we only score frag-
ments that stem from simple fragmentation events.

For our scoring, we use real masses of fragments, so we
first describe some modifications needed to do so. All the
presented recurrences iterate over integer masses m, but
monosaccharide and subtree masses are noninteger. To deal
with real masses, we define S½m� to be the maximal score of
any labeled tree whose exact mass falls into the interval
½m� 0:5;mþ 0:5Þ and additionally store the exact mass of
the subtree with optimal score in this interval. We update a
matrix entry S½m� only if the new subtree mass (the sum of
�ðgÞ, and masses of two headless subtrees) falls in the
current interval. Note that for integer mass m1, we may
have to consider the neighboring entries fm1 � 1;m1;m1 þ
1g in the maximum (3), since the sum of corresponding
exact masses might fall into the current interval.

To guarantee that the solution of the recurrence is optimal,
we would have to assume that at most one peak can be found
in every interval of size 1 Da, but this can be violated for
candidate mass spectra. In this case, we store the highest
scoring explanation, but we can no longer guarantee that the
optimal solution of the original problem (the true solution) is
found using the integer recurrence. In practice, this is usually
not a problem: Rounding might lead to a different optimal
solution but clearly, the true solution will be only slightly
suboptimal. Since we are not interested in the optimal
solution but instead, accept all solutions that are up to some
� away from optimality, chances are that the true solution
will be part of the set of candidates we generate. A similar
reasoning applies, if we limit exact computations to the k
most intense peaks in the spectrum because only peaks of
low intensity and small score will be used multiple times.

The basis of our peak score is its normalized intensity,
assuming that a high intensity indicates a high probability
that the peak is not noise. Mass spectrometrists assume that
the mass error of a device roughly is normal distributed. To
account for mass deviation � ¼ jmpeak �mfragmentj, we
multiply the peak intensity with erfcð�=ð�

ffiffiffi
2
p
ÞÞ, where erfc

is the error function complement and � the standard
deviation of the measurement error, typically set to 1

3 or 1
2

of the mass accuracy.
We do not apply a penalty, if a peak in the sample

spectrum is not explained by our candidate spectrum. This
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may be justified by the fact that our scoring ignores
fragments not resulting from a simple fragmentation event.
But a closer analysis reveals that by scoring peak intensities,
we, in fact, score each peak for not being noise. A candidate
that does not explain an intense peak, declares this peak to
be noise, although this is unlikely. The candidate then has a
disadvantage compared to other candidates that can
explain this peak. This scoring leads to good results as
long as the intensity of peaks from simple fragmentation
events is higher than that from nonsimple ones.

6 EVALUATION OF GLYCAN TOPOLOGY

CANDIDATES

Once we have reduced the set of potential glycan topologies
from the exponential number of initial candidates, to a
manageable set of tens or hundreds of structures, we can
now evaluate each candidate glycan topology using an in-
depth comparison between its theoretical spectrum and the
sample spectrum. This comparison can also take into account
multiple-cleaved fragment trees, other ion series such as A/
X and C/Z ions, or those X-ions that have lost parts of a
monosaccharide. Since evaluation of candidate glycan
structures is not the focus of this work, we only present a
rather general scoring scheme, and we will not go into too
much detail here. Still, we reach good identification results.
Our scoring generalizes ideas of Goldberg et al. [8]. We stress
that our evaluation approach leaves room for improvement.

The idea of our approach is to determine and score the
fragmentation tree of the glycan, a representation of the
consecutive fragmentation events. Therefore, we construct a
fragmentation graph similar to the one used for metabolite
identification in [22]. The fragmentation graph enables us to
score all peaks that we can explain by fragmentation of the
candidate glycan. Additionally, we can incorporate relation-
ships between fragments. For example, a double-cleaved
fragment receives a higher score if the intermediate single-
cleaved fragment exists. We again avoid peak double counts
by regarding peaks as colors, and not allowing to score a
color twice. The fragmentation graph is constructed as follows:
It contains a vertex for every subtree of the candidate tree
whose mass deviates less than the instruments mass
accuracy from a peak mass. Vertices whose subtrees
correspond to the same peak are colored with the same
color. Vertices are connected by a directed edge, if the tree of
the descendant vertex is a subtree of the tree of the ancestor
vertex. This results in a transitive colored digraph.

We now compute scores for the vertices and edges of the
fragmentation graph. In contrast to candidate generation,
we use the unfolded spectrum as there are separate vertices
for reducing end and nonreducing end ions in the
fragmentation graph. The vertex score comprises peak
intensity and mass deviation. Additionally, we penalize for
the number of fragmentation events necessary to produce
the fragment from the fragmentation graph root. We refer to
this number as the fragmentation distance xr and score it by a
slowly falling function we chose as fragrðxrÞ ¼ 0:75xr .

The edge score takes into account the fragmentation
distance to the parent vertex. We assume that intermediate
fragments should be observed in the spectrum. So, edges
that represent multiple fragmentation events shall contri-
bute less to the score than edges representing a single

fragmentation event. We achieve this by using the sub-
additive function frageðxeÞ ¼ 1=x2

e , where xe is the fragmen-
tation distance of parent and child vertex. This function has
been chosen ad hoc to avoid overfitting to the data. To
simplify the score calculation for the algorithm, we pass on
the vertex scores to all incoming edges multiplying it with
the edge scores. The overall score of an edge is then
sðeÞ ¼ int � erfc � fragrðxrÞ � frageðxeÞ, where int is the peak
intensity and erfc is the complementary error function of the
mass deviation.

The maximum colorful subtree [22] of this weighted graph
(the subtree that has maximal weight and uses at most one
vertex per color) then is a hypothetical fragmentation tree.
Unfortunately, finding this tree is NP-hard, and we refrain
from using the exact FPT algorithm from [22] since it is too
slow to be executed for each candidate. Therefore, we apply
a greedy heuristic to determine a score. This heuristic tests
all edges in descending order of score. If an edge can be
added violating neither the tree nor the colorful property, it
is attached to the partial tree. Due to the transitivity of the
fragmentation graph, this procedure eventually results in a
tree. The score of the candidate structure is the sum of the
edge scores of the fragmentation tree.

We incorporate C/Z ions by creating vertices not only
for every B and Y ion subtree mass that could explain a
peak, but also for those masses shifted by the mass increase
or decrease of C or Z ions. These vertices are also colored
according to the mass of the peak they explain. Edge
creation is then performed as usual. This ensures that C and
Z ions are considered separately from their corresponding B
and Y ions, but a peak may only be explained by either a B/
Y or a C/Z ion.

7 RESULTS ON EXPERIMENTAL DATA

To show that our method works for experimental data, we
have implemented it and applied it to a set of 24 glycan
mass spectra.

We implemented our algorithm in Java 1.5. Running
times were measured on an Intel Core 2 Duo, 2.5 GHz with
3 GB memory. A set of carbohydrate side chains of the serine
protease batroxobin from the venom of the viper Bothrops
moojeni served us to test the program [23]. We used
24 spectra of N-glycans from recent investigations, where a
protonated precursor ion was selected. The spectra were
measured using a Bruker Daltonics ultraFlex TOF/TOF
instrument with a MALDI ion source. Glycans are composed
of fucoses (F, mass 146.06 Da), hexoses (H, 162.05 Da), and
N-acetylhexosamines (N, 203.08 Da). The 24 glycans were
not permethylated and do not contain sialic acids. Glycans
were detached from the protein and the reducing end was
marked by a two-aminopyridine modification resulting in a
mass increase of 78 Da for reducing end ions. The raw data
was baseline corrected and peaks were picked using the
SNAP method provided by Bruker. We follow the naming
convention from [23] for reporting the analyzed glycans. We
use the fraction the glycan was extracted from (e.g., F2-5)
followed by the composition of monosaccharides.

We used the following parameters for analyzing the
spectra. We set k ¼ 10, avoiding multiple peak counting for
the ten most intense peaks. We allowed a mass deviation of
1.0 Da and chose � ¼ 0:5 Da as standard deviation of the
measurement error. After normalizing the sum of peak
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intensities, we discarded all peaks with an intensity lower
than 0.02. We chose the penalty for missing peaks as the
average of the smallest intensity and the mean value of all
peak intensities. We iteratively adjusted the score deviation
� for backtracking to obtain a candidate set of about 100-
200 topologies. Results are shown in Table 1.

Average running time for candidate generation was 2.5 s
without and 4.0 s including trace back. There were many
spectra with less than 10 decomposable peaks what reduced
running time. For the “loaded” spectra with k ¼ 10, average
running time was 3.6 s without and 5.5 s with trace back. In
all except two cases, the candidate set contained the
manually determined topology, see below. For 17 spectra
the true topology was found in the TOP 50 of candidates
and for 12 spectra even in the TOP 25 of candidates.

For F4-4-H3N6F2, we were not able to generate the correct
topology with the described parameter set because there
were no single-cleaved fragments of the trimannosyl core in
the spectrum. Since this results in too many missing peaks,
the algorithm can only reconstruct the correct topology, if we
lower the penalty for missing peaks to a value slightly larger
than the weakest peak’s intensity. Because of the small
number of peaks in the spectrum, we assume that the
threshold for peak picking was set too low. In the case of F6-
1-H2N4F, all expected peaks were present in the spectrum.
Here, intensities of double-cleaved fragments resulting from
cleaving fucose and another subtree were as high or even
higher than some single fragmentation peaks. Subtracting

the mass of fucose from the parent mass identified the
unfucosylated structure correctly. We plan to incorporate an
automated identification of such cases into our approach.

We also tested if avoiding peak double counting is needed
for candidate generation. To this end, we set k ¼ 0, so every
peak could be counted an arbitrary number of times. Doing
so, candidate generation produced the correct topology only
for eight of the 24 spectra even if the candidate set was chosen
to contain at least 500 structures. This shows that avoiding
multiple peak counting is essential for the analysis. Certain
glycan topologies do, in fact, create the same fragment mass
several times. It must be understood that our approach does
not penalize such topologies, but it also does not reward them.
As the extreme case, consider a single leaf of the tree. If the
corresponding peak has high intensity, then we reward trees
for having identical labels at all leaves, which is surely not
desirable. Finally, we tested if further increasing k could
improve the results of candidate generation. But as it turned
out, increasing k to the 15 most intense peaks did not
improve the results. So, computations can be carried out with
a moderate k such as k ¼ 10 for glycans of this size without
loosing specificity.

As already mentioned, evaluation of candidate glycan
structures is not the focus of this work, so we just report some
identification rates we were able to obtain after evaluation.
The evaluation step ranked the true topology in all except
four cases in the TOP 20, for 12 structures even on the first
rank. Two topologies that were correctly identified are
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Results of the Algorithm for 24 N-Glycans of Batroxobin [23]

Running times including trace back. � See text for details.



displayed in Fig. 3, and a manually annotated spectrum for
one of them is shown in Fig. 4. In many cases, top-scoring
topologies are biologically impossible, that is, they do not
contain the trimannosyl core that N-glycans generally share.
Using this biological knowledge on the structure of the
analyzed glycans, we significantly reduce the number of
candidates and also improve our identification results. We
always find the true solution in the TOP 4, and 14 true
topologies reach rank one, see the right columns of Table 1.

In one case, our software suggested a candidate that had
not been considered by the experimentalists for annotation.
The experimentalists annotated the spectrum with a
slightly different topology, which was second place in our
analysis. We display these topologies in Fig. 5. Unfortu-
nately, the spectrum does not contain sufficient information
to distinguish between these candidates. To distinguish
between the two candidates, we can record MS3 data,
where a fragment of the glycan is again fragmented.
Unfortunately, such data was not available in our study.

8 COUNTING GLYCAN TOPOLOGIES

We have mentioned above that the number of glycan
topologies easily becomes prohibitive for enumerating all
possible topologies. We now substantiate this claim, by
computing the number of glycan topologies for a certain
number of monosaccharides and for a certain mass. We first
recapitulate some classical results for counting rooted trees

of bounded degree, then present an algorithm for the exact
and swift counting of glycan topologies.

Let N½n; �j j� be the number of different glycan topologies
with n vertices, where vertices are labeled with elements
from �. Recall that a glycan topology corresponds to a rooted
tree such that every vertex has out degree at most four. For
�j j ¼ 1, Otter [24] has shown that the number of rooted trees

with out-degree at most four, asymptotically behaves like2

N½n; 1� 	 ~tðnÞ :¼ 0:462103 � 2:911038n � n�3=2: ð4Þ
This approximation is very accurate even for small n: For
n ¼ 10, we calculate ~tð10Þ ¼ 638:6 whereas the true number
is 643, so the relative error is well below one percent. We
can estimate the number of glycan topologies over an
arbitrary alphabet � by �j jn�~tðnÞ since every vertex can be
colored with an individual color. This overestimates the
number of trees, as we do not take into account isomorphic
trees. For j�j ¼ 5 and n ¼ 10 we get 510 � ~tð10Þ ¼ 6:24 � 109

whereas the true number is 3:10 � 109, so the true number is
only half of what our rough estimate tells us. The relative
error will become even larger as n increases.

The “classical way” of counting trees, is to use Pólya’s
enumeration theorem [25]. We want to count the number of
rooted quaternary trees, where every vertex has exactly four
children. Note that there is a bijection between rooted
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Fig. 3. The manually determined topologies of (left) H5N4F and (right) H4N4F. In both cases, the correct topology was identified by our algorithm
without using biological prior knowledge.

Fig. 4. The peak-picked spectrum of F7-2-H4N4F annotated with single-cleaved fragments of the correct glycan topology. Only the peak at
m=z 
 147, corresponding to a single protonated fucose is missing. Three intense peaks marked with (�) correspond to double-cleaved fragments.
Additionally, all peaks marked with filled circles can be annotated with double-cleaved fragments and peaks marked with unfilled circles can be
annotated with fragments that stem from more than two cleavages.

2. Computing the two constants is somewhat involved, we omit the
mathematical details.



quaternary trees with n nonleaf vertices and rooted trees
with maximum out degree four and n vertices. To count this
number, we need the cycle index of the symmetric group S4

with four elements, which is

ZðS4Þ ¼
1

24
a4

1 þ 6a2
1a2 þ 3a2

2 þ 8a1a3 þ 6a4

� �
:

Now, the generating function T ðzÞ of the set of rooted
quaternary trees can be expressed via

T ðzÞ ¼ 1þ 1

24
zðT ðzÞ4 þ 6T ðzÞ2T ðz2Þ þ 3T ðz2Þ2

þ 8T ðzÞT ðz3Þ þ 6T ðz4ÞÞ:

For the number of trees tðnÞ :¼ N ½n; 1�, this leads to the
recurrence tð0Þ ¼ 1 and

tðnÞ ¼ 1

24

 X
iþjþkþl¼n�1

tðiÞtðjÞtðkÞtðlÞ þ 6

X
iþjþ2k¼n�1

tðiÞtðjÞtðkÞ þ 3
X

2iþ2j¼n�1

tðiÞtðjÞ

þ 8
X

iþ3j¼n�1

tðiÞtðjÞ þ 6
X

4i¼n�1

tðiÞ
!
:

ð5Þ

One evaluation of (5) takes Oðn3Þ time, so the recurrence
needs Oðn4Þ time to compute tðnÞ. We will show in the next
section how to improve the running time to Oðn3Þ.
Unfortunately, there seems to be no possibility to generalize
these results to trees where nodes are (nonuniquely) labeled
with elements from a finite set.

In the remainder of this section, we present a method for
the exact computation of N ½n� :¼ N½n; j�j� for a fixed
alphabet � of arbitrary size. To reach an efficient recur-
rence, we distinguish four cases, corresponding to the out
degree of the root vertex. To the root vertex, we attach a
forest of one to four trees that in total have one vertex less
than the new glycan topology. In our recurrence, we will
also have to upper bound the number of vertices in each
individual tree. To this end, let Ni½n; k� be the number of
forests consisting of i nonempty glycan trees, such that the
total number of vertices in the forest is n and no tree in
the forest has more than k vertices. Clearly, we can label the
root with any element from �. Hence, the number of glycan
topologies labeled with the alphabet � is

N½nþ 1� ¼ �j j �
�
N½n� þN2½n; n� þN3½n; n� þN4½n; n�

�
: ð6Þ

We initialize N½0� ¼ 1 for the empty tree.

Obviously, the main difficulty is to compute the number of

forests Ni½n; k�. Assume that l � k is the maximal size of any

tree in such a forest, and let j � i be the number of trees of size

l in this forest. We can choose N½l�þj�1
j

	 

different trees of size l.

Now, i� j trees remain in the forest and these can have at

most l� 1 vertices each, and must haven� jlvertices in total.

From the definition above, we know that there existNi�j½n�
jl; l� 1� such forests. Thus, we reach the recurrence

Ni½n; k� ¼
Xi
j¼1

Xminfk;bn=jcg

l¼dn=ie

N½l� þ j� 1

j

� �
�Ni�j½n� jl; l� 1�;

ð7Þ

for the number of different forests with i glycan trees,
maximal tree size k, and n vertices in total. We have to
initialize Ni½n; k� depending on the number of trees i. For
i ¼ 0, we set N0½0; k� :¼ 1, and N0½n; k� :¼ 0 for all n � 1. For
i ¼ 1, we set N1½0; k� ¼ 0 for all k � 0, N1½n; k� :¼ N ½n� for
n � k, and N1½n; k� :¼ 0 otherwise. For i � 2, we set Ni½n; k� :
¼ 0 in case i > n or k � i < n or k ¼ 0 holds. All other values
can be computed from recurrences (6) and (7). So, we have
reached:

Lemma 1. Using recurrences (6) and (7), the number of glycan

topologies with n vertices over an alphabet � can be computed

in time Oðn3Þ and space Oðn2Þ.

Table 2 displays the number of different glycan

topologies for an alphabet size of one to five.
Finally, we show how to count the number of glycan

topologies of a given mass M. One may be tempted to
compute all possible monosaccharide compositions of mass
M, then use the multinomial coefficient of the composition
times N ½n� to compute the number of labeled glycan trees
for each monosaccharide composition. Unfortunately, this
again overestimates the true number of trees, as we have to
take into account that siblings may induce isomorphic trees,
in which case the true number of labellings is much smaller.
In addition, this approach becomes prohibitive for large
masses and large alphabets, as the number of decomposi-
tions explodes.

Here, we combine (1) with the above recurrences (6), (7),
to reach a recurrence that is practically independent of �j j.
We again assume integer masses M ¼ 0; 1; 2; . . . . Let � be
the alphabet of monosaccharides. Let N ½M� be the number
of glycan topologies over � with mass M. Finally, let
N i½M;m� be the number of forests consisting of i nonempty
glycan trees, such that the total mass of the trees in the
forest is M, and no tree in the forest weights more than m.
Similar to (6), we have
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Fig. 5. Candidate topologies for F3-H3N8F: (left) The topology determined by the experimentalists and (right) the highest scoring topology of our
algorithm.



N ½M� ¼
X
g2�

ðN ½M � �ðgÞ� þ N 2½M � �ðgÞ;M�

þ N 3½M � �ðgÞ;M� þ N 4½M � �ðgÞ;M�Þ:
ð8Þ

We initialize N ½0� :¼ 1. For brevity, we assume N ½M� ¼ 0

and N i½M;m� ¼ 0 for M < 0.
Again, the main difficulty is to compute the number of

forests N i½M;m�, what can be achieved by a variation of (7)

N i½M;m� ¼
Xi
j¼1

Xminfm;bM=jcg

m0¼dM=ie

N ½m0� þ j� 1

j

� �

� N i�j
�
M � jm0;m0 � 1

�
:

ð9Þ

Similar to above, we initialize N i½M;m�: For i ¼ 0, we set

N 0½0;m� :¼ 1, and N 0½M;m� :¼ 0 for all M � 1. For i ¼ 1,

we set N 1½M;m� :¼ N ½M� for M � m, and N 1½M;m� :¼ 0

otherwise. For i � 2, we set N i½M;m� :¼ 0 in case m ¼ 0 or

i > M or m � i < M. We reach:

Lemma 2. Using recurrences (8) and (9), the number of glycan

topologies with integer mass M over an alphabet � can be

computed in time Oð �j jM þM3Þ and space OðM2Þ.

9 COUNTING ROOTED TREES WITH BOUNDED

DEGREE

We now generalize our findings from the previous section
to arbitrary rooted trees with out degree bounded by d.
Note that these results do not apply for glycans, but for
other structures that can be viewed as rooted trees of
bounded degree.

First, let us use Pólya’s enumeration theorem for
counting trees. For out degree d, we have to compute the
cycle index of the symmetric group Sd, which is

ZðSdÞ ¼
1

d!

X
ðjÞ

d!Qd
k¼1 k

jkjk!
aj1

1 a
j2
2 � � � a

jd
d : ð10Þ

The sum runs over all ðj1; . . . ; jdÞ satisfying 1 � j1 þ 2 �
j2 þ � � � þ d � jd ¼ d. Hence, there exist pðdÞ summands in

(10), where pðnÞ is the partition number of d, that is, the

number of ways of writing d as a sum of positive integers.
For each partition x1 þ � � � þ xl ¼ d, we get a summand in

the cycle index, and hence, a sum in the recurrence for the
number of trees tdðnÞ, compare to (5). These sums are of the
form

X
x1i1þ...þxlil¼n�1

tdði1Þ � tdði2Þ � � � tdðilÞ; ð11Þ

so we can compute this value in time OðnlÞ and in view of
l � d, in OðndÞ. Doing so for all partitions, we reach a total
running of OðpðdÞndþ1Þ for computing all values
tdð0Þ; . . . ; tdðnÞ. But we can do faster than that: We can
rewrite (11) as

Xbðn�1Þ=x1c

i1¼0

tdði1Þ �
Xbðn�1�i1x1Þ=x2c

i2¼0

tdði2Þ � � �

Xbðn�1�i1x1�...�il�1xl�1Þ=xlc

il¼0

tdðilÞ:

Using convolution, we can compute these values in time
Oðln2Þ, and hence, Oðdn2Þ. With this trick, we reach a total
running time of Oðd pðdÞn3Þ.

Unfortunately, growth of pðdÞ is superpolynomial in d:
More precisely, we have

pðdÞ 	 1

4d
ffiffiffi
3
p exp �

ffiffiffiffiffiffiffiffiffiffi
2d=3

p	 


 0:144337 � 1

d
� 13:001954

ffiffi
d
p
;

for the asymptotic growth of pðdÞ [26].
Now, let us take a look at our alternative method for

counting trees, using (6) and (7). It is quite obvious how to
generalize our findings, to count trees with maximal out
degree d other than d ¼ 4. Doing so, we reach a polynomial
running time for counting trees of bounded out degree:

Lemma 3. We can count the number of rooted trees with n
vertices and maximal out degree d in time Oðd2n3Þ and space
Oðdn2Þ. The same holds for labeled rooted trees, where vertices
are (nonuniquely) labeled with elements from a finite set �.

As a side note, we want to point out that recurrence (6),
(7) is much simpler than a computation based on Pólya’s
enumeration theorem.

10 CONCLUSION

We have presented an approach for the automated
analysis of glycan tandem mass spectra. We focused on
the problem of candidate generation needed to reduce the
search space of glycan structures. Despite the computa-
tional complexity of the candidate generation problem, our
approach avoids peak double counting and solves the
problem exactly using fixed-parameter techniques. We also
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TABLE 2
Number of Glycan Topologies for an Alphabet Size of One to Five, Plus Rounded Approximation (4)



present a preliminary scoring scheme for candidate

generation. Evaluation using experimental data shows that

our method achieves swift running times and very good

identification results. We plan to integrate our algorithms

into a framework for MS or glycan analysis, such as

SIRIUS [27] or GlycoWorkbench [17].
We have also presented an efficient recurrence for

counting glycan trees and more generally, (labeled) rooted
trees of bounded out degree, improving on results obtained
using Pólya’s enumeration theorem.
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