Enhanced Ethanol Production with Mixed Lignocellulosic Substrates from Commercial Furfural and Cassava Residues

Li Ji, Hailong Yu, Zhiping Liu, Jianxin Jiang, Dafeng Sun
2015 BioResources  
Simultaneous saccharification and fermentation (SSF) is an attractive process configuration for bio-ethanol production. Further reductions in process cost of SSF are expected with the use of waste agricultural or industrial materials as feedstock. In the current study, two industrial lignocellulosic wastes, cassava residues (CR) and furfural residues (FR), were combined during SSF for ethanol production due to their value-added applications and positive environmental impacts. After CR were
more » ... fied and saccharified, saccharification liquid was added to SSF of FR. The effect of substrate fractions was investigated in terms of ethanol yield, byproduct concentration and the number of yeast cells. Besides, a natural surfactant, Gleditsia saponin, was added to investigate the effect of FR lignin on SSF with 20% substrate concentration. The results showed that increasing the ratio of CR/FR improved the ethanol yield and that the ethanol yield was also increased gradually by increasing the substrate concentration from 6% to 12%. A high ethanol concentration of 36.0 g/L was obtained under the condition of CR:FR = 2:1 with 12% substrate concentration, reaching 71.1% of the theoretical yield. However, Gleditsia saponin did not affect the ethanol yield, indicating the insignificant effect of lignin in SSF with low lignin content in the reaction system.
doi:10.15376/biores.10.1.1162-1173 fatcat:jsgfz5rx4bdyrlfpsrama2ggbu