Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics

Jason E. Box, Kathleen Ski
2007 Journal of Glaciology  
A supraglacial lake-depth retrieval function is developed, based on the correspondence between moderate-resolution imaging spectroradiometer (MODIS) reflectance and water depth measured during raft surveys. Individual lake depth, area and volume statistics, including short-term temporal changes for Greenland's southwestern ablation region, were compiled for 2000–05. The maximum area of an individual lake was found to be 8.9 km2, the maximum volume 53.0 × 106 m3 and the maximum depth 12.2 m,
more » ... ling over 0.0625 km2 pixel areas. The total lake volume reaches >1 km3 in this region by July each year. The importance of melt lake reservoirs to Greenland ice-sheet flow may be a feedback between abrupt lake drainage events and ice dynamics. Lake-outburst volumes up to 31.5 × 106 m3 d−1 are capable of providing sufficient water via moulins to hydraulically pressurize the subglacial environment. Since the overburden pressure at the base of a flooded moulin is greater than that provided by ice, lake-outburst events seem capable of exerting sufficient upward force to lift the ice sheet locally, if water flow in the subglacial environment is constrained laterally. Considering a moulin with a 10 m2 cross-sectional area, basal pressurization can be maintained over lake-outburst episodes lasting hours to days.
doi:10.3189/172756507782202883 fatcat:vwfltj2obfe7holcc66hxzbtri