Mining Impact-Targeted Activity Patterns in Imbalanced Data

Longbing Cao, Yanchang Zhao, Chengqi Zhang
2008 IEEE Transactions on Knowledge and Data Engineering  
Impact-targeted activities are rare but they may have a significant impact on the society. For example, isolated terrorism activities may lead to a disastrous event, threatening the national security. Similar issues can also be seen in many other areas. Therefore, it is important to identify such particular activities before they lead to having a significant impact to the world. However, it is challenging to mine impact-targeted activity patterns due to their imbalanced structure. This paper
more » ... elops techniques for discovering such activity patterns. First, the complexities of mining imbalanced impact-targeted activities are analyzed. We then discuss strategies for constructing impact-targeted activity sequences. Algorithms are developed to mine frequent positive-impact-oriented ðP ! T Þ and negative-impact-oriented ðP ! T Þ activity patterns, sequential impact-contrasted activity patterns (P is frequently associated with both patterns P ! T and P ! T in separated data sets), and sequential impact-reversed activity patterns (both P ! T and P Q ! T are frequent). Activity impact modeling is also studied to quantify the pattern impact on business outcomes. Social security debt-related activity data is used to test the proposed approaches. The outcomes show that they are promising for information and security informatics (ISI) applications to identify impact-targeted activity patterns in imbalanced data.
doi:10.1109/tkde.2007.190635 fatcat:uy6bou7khfb35fnaaens2uqkzy