Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery [article]

Y. Chen, S. Aslanoglou, G. Gervinskas, H. Abdelmaksoud, N.H. Voelcker, R. Elnathan, University, My, University, My
2020
Engineered cell–nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent
more » ... cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell–SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate—crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
doi:10.34657/118 fatcat:2b4u43vb5naqdmvbm3djpu545q