FAst generation of lexicographic satisfiable assignments

Ana Petkovska, Alan Mishchenko, Mathias Soeken, Giovanni De Micheli, Robert Brayton, Paolo Ienne
2016 Proceedings of the 35th International Conference on Computer-Aided Design - ICCAD '16  
Lexicographic Boolean satisfiability (LEXSAT) is a variation of the Boolean satisfiability problem (SAT). Given a variable order, LEXSAT finds a satisfying assignment whose integer value under the given variable order is minimum (maximum) among all satisfiable assignments. If the formula has no satisfying assignments, LEXSAT proves it unsatisfiable, as does the traditional SAT. The paper proposes an efficient algorithm for LEXSAT by combining incremental SAT solving with binary search. It also
more » ... roposes methods that use the lexicographic properties of the assignments to further improve the runtime when generating consecutive satisfying assignments in lexicographic order. The proposed algorithm outperforms the state-of-the-art LEXSAT algorithm-on average, it is 2.4 times faster when generating a single LEXSAT assignment, and it is 6.3 times faster when generating multiple consecutive assignments.
doi:10.1145/2966986.2967040 dblp:conf/iccad/PetkovskaMSMBI16 fatcat:av3senw2xbd5dger2uy3lprbv4