Diversity and fate of fungal metabolites during the preparation of oshikundu, a Namibian traditional fermented beverage

J.M. Misihairabgwi, A. Ishola, I. Quaye, M. Sulyok, R. Krska
2018 World Mycotoxin Journal  
Sorghum and pearl millet, ingredients for the popular Namibian traditional fermented beverage oshikundu, are prone to fungal infection, raising concerns for consumer health from mycotoxin exposure. This study aimed at determining the diversity of fungal metabolites in street-vended ingredients and their transfer rates into oshikundu. A total of 105 samples (40 sorghum malt, 40 pearl millet, 25 oshikundu) were analysed for 700 fungal, bacterial and plant metabolites, using liquid
more » ... andem mass spectrometry. Of 98 quantified metabolites, 84 were fungal, some being mycotoxins. Aspergillus metabolites were most prevalent (50%, n=42), including aflatoxins, aflatoxin precursors, cyclopiazonic acid and 3-nitropropionic acid from Aspergillus flavus; helvolic acid, gliotoxin and fumiquinazolines from Aspergillus fumigatus and cytochalasin E, patulin and tryptoquivalines from Aspergillus clavatus. High levels of up to 2,280 μg/kg for cyclopiazonic acid and 11,900 μg/kg for 3-nitropropionic acid were quantified in sorghum malts. Other metabolites included fumonisins, curvularin, alternariol and dihydroergosine produced by Fusarium, Penicillium, Alternaria and Claviceps genera, respectively. European Union legislated mycotoxins occurred in cereals at a prevalence range of 3-75%, while none were quantifiable in oshikundu. Aflatoxin B 1 was quantified in pearl millet meals (13%) and sorghum malts (50%), with 15% sorghum malts having levels above the European Union regulatory limit of 5 μg/kg. Fumonisin B 1 was quantified in pearl millet meals (50%) and sorghum malts (75%) at maximum levels of 3,060 μg/kg and 123 μg/kg respectively, and levels in 5% pearl millet meals were above the European Union regulatory limit of 2,000 µg/kg. Zearalenone and ochratoxin A were quantified in the cereals at levels below European Union regulatory limits. For most metabolites quantifiable in oshikundu, transfer rates from cereals to oshikundu were above 50%, necessitating the use of good quality ingredients for preparing oshikundu and assessment of consumer exposure to mycotoxins.
doi:10.3920/wmj2018.2352 fatcat:iggwn5ppefac7cmrw5fndpdipy