A potential strategy for reducing cysts in autosomal dominant polycystic kidney disease with a CFTR corrector

Murali K. Yanda, Qiangni Liu, Liudmila Cebotaru
2018 Journal of Biological Chemistry  
Edited by John M. Denu Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of cysts, leading to a decline in function and renal failure that cannot be prevented by current treatments. Mutations in pkd1 and pkd2, encoding the polycystin 1 and 2 proteins, induce growth-related pathways, including heat shock proteins, as occurs in some cancers, raising the prospect that pharmacological interventions that target these pathways might alleviate or prevent
more » ... PKD. Here, we demonstrate a role for VX-809, a corrector of cystic fibrosis transmembrane conductance regulator (CFTR), conventionally used to manage cystic fibrosis in reducing renal cyst growth. VX-809 reduced cyst growth in Pkd1-knockout mice and in proximal, tubule-derived, cultured Pkd1 knockout cells. VX-809 reduced both basal and forskolin-activated cAMP levels and also decreased the expression of the adenylyl cyclase AC3 but not of AC6. VX-809 also decreased resting levels of intracellular Ca 2؉ but did not affect ATP-stimulated Ca 2؉ release. Notably, VX-809 dramatically decreased thapsigargin-induced release of Ca 2؉ from the endoplasmic reticulum (ER). VX-809 also reduced the levels of heat shock proteins Hsp27, Hsp70, and Hsp90 in mice cystic kidneys, consistent with the restoration of cellular proteostasis. Moreover, VX-809 strongly decreased an ER stress marker, the GADD153 protein, and cell proliferation but had only a small effect on apoptosis. Given that administration of VX-809 is safe, this drug potentially offers a new way to treat patients with ADPKD.
doi:10.1074/jbc.ra118.001846 pmid:29875161 fatcat:s3zh75yraffeff2ju75crndeke