Synergetic effect of green tea on polymer gel dosimeter and determination of optimal wavelength to choose light source for optical computed tomography

Sathiya Raj, James Samuel, Senthil Kumar, Gopishankar Natanasabapathi
2016 International Journal of Cancer Therapy and Oncology  
Cite this article as: Raj S, Jebaseelan Samuel J, Kumar S, Natanasabapathi G. Synergetic effect of green tea on polymer gel dosimeter and determination of optimal wavelength to choose light source for optical computed tomography. Int J Cancer Ther Oncol 2015; 4(1):412. Abstract Purpose: The ultimate aim of this study is to observe the effect of Green tea as a co-antioxidant in PAGAT gel dosimeter and evaluate the appropriate light source for scanning the PAGAT and NIPAM polymer gel. Methods:
more » ... h PAGAT (Poly Acrylamide Gelatin Tetrakis hydroxyl phosphonium chloride) and NIPAM (N-Isopropyl acrylamide) gel were prepared in normoxic condition. The green tea extract (GTE) was prepared and tested only on PAGAT. Co-60 teletherapy machine has been used for irradiation purpose, and the gel samples were scanned using UV-Visible spectrophotometer. Water equivalency of the gel has been tested in terms of their electron density, effective atomic number and Ratio of oxygen and hydrogen (O/H). We have used NIST XCOM database to test the water equivalency. Results: In this study we found that the GTE added to the gel do not respond to the given doses. By adding sugar we can enhance the sensitivity of the gel. Further investigations are required to use Green tea as a co antioxidant concentration of THPC (Tetrakis hydroxymethyl phosphonium chloride). The optimal wavelength with different region for scanning the PAGAT is 450 to 480 nm (Blue region), for NIPAM it is 540 nm and 570 nm (Green and yellow region). The PAGAT and NIPAM showed better sensitivity at 510 nm. Both gels have their effective atomic number closer to water (NIPAM-7.2, PAGAT-7.379). Conclusion: As per our results, we concluded that GTE alone is not an effective co-antioxidant for polymer gels. When the GTE is combined with sugar and THPC, it protects the gel from pre-polymerization. This study strongly suggests that the blue light is an optimal source for scanning the PAGAT and green to yellow light for NIPAM gel. Though both gels were considered as water equivalent, the PAGAT is equivalent to water and the temporal stability of this gel is higher than NIPAM.
doi:10.14319/ijcto.41.2 fatcat:pydgrgooxrbg5bz5zsh5tlmmt4