Tribological Behavior of Polymers Simulated by Molecular Dynamics

Witold Brostow, J. Adam Hinze, Ricardo Simões
2004 Journal of Materials Research  
Using molecular dynamics to simulate behavior of polymer surfaces during scratch testing, we report the first results of computer simulations of scratch behavior of noncrystals. A previously described procedure for creating realistic polymeric materials on the computer [W. Brostow, A.M. Cunha, and R. Simoes, Mater. Res. Innovat. 7, 19 (2003)] and used until now to simulate mechanical behavior of metals [S. Blonski, W. Brostow, and J. Kubat, Phys. Rev. B 49, 6494 (1994)] and one-and two-phase
more » ... ymers [W. Brostow, A.M. Cunha, J. Quintanilla, and R. Simoes, Macromol. Theory Simul. 11, 308 (2002); W. Brostow, A.M. Cunha, and R. Simoes, Proc. Ann. Tech. Conf. Soc. Plastics Engrs. 60, 3105 (2002) ] was applied. While experiments provide only the macroscopic penetration depth and the recovery (healing) depth, the simulations give the behavior of each macromolecular chain segment at each moment in time. We report results for one-phase polymers and also for systems with varying concentrations of a liquid crystalline (LC) second-phase that acts as a reinforcement. We relate the local structure to scratch resistance and recovery. The orientation of the chemical bonds is a major factor. The presence of a LC phase improves the tribological properties; however, the effect is not as significant as might have been expected.
doi:10.1557/jmr.2004.19.3.851 fatcat:dcvm7aooqzdnhliztvw53g67sq