### Sub-Exponentially Many 3-Colorings of Triangle-Free Planar Graphs

Arash Asadi, Luke Postle, Robin Thomas
<span title="">2009</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/fhi2xwpnh5gmlgof2idwu5wlgq" style="color: black;">Electronic Notes in Discrete Mathematics</a> </i> &nbsp;
Thomassen conjectured that every triangle-free planar graph on n vertices has exponentially many 3-colorings, and proved that it has at least 2 n 1/12 /20000 distinct 3-colorings. We show that it has at least 2 √ n/362 distinct 3-colorings.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.endm.2009.07.014">doi:10.1016/j.endm.2009.07.014</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/opdqk3sqvvhxrnz6yysxak2yrq">fatcat:opdqk3sqvvhxrnz6yysxak2yrq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20130708125350/http://people.math.gatech.edu/~thomas/PAP/subexp.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ff/bc/ffbc9a30681c0edf4083c1cccfd35d144b5986f7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.endm.2009.07.014"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>