Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance [article]

Akina Umemoto, Michael Inzlicht, Clay B. Holroyd
2017 bioRxiv   pre-print
Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We
more » ... empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To investigate this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2 hours in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also examined how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels combine with strong reward valuation to foster rapid improvements in task performance, and a later phase in which high control levels counteract waning reward valuation to maintain stable task performance.
doi:10.1101/199687 fatcat:opsxpwgbazbzrl22sdlooyq6lq