A Higher-Order Motif-Based Spatiotemporal Graph Imputation Approach for Transportation Networks

Difeng Zhu, Guojiang Shen, Jingjing Chen, Wenfeng Zhou, Xiangjie Kong, Yan Huang
2022 Wireless Communications and Mobile Computing  
Due to the incomplete coverage and failure of traffic data collectors during the collection, traffic data usually suffers from information missing. Achieving accurate imputation is critical to the operation of transportation networks. Existing approaches usually focus on the characteristic analysis of temporal variation and adjacent spatial representation, and the consideration of higher-order spatial correlations and continuous data missing attracts more attentions from the academia and
more » ... y. In this paper, by leveraging motif-based graph aggregation, we propose a spatiotemporal imputation approach to address the issue of traffic data missing. First, through motif discovery, the higher-order graph aggregation model was presented in traffic networks. It utilized graph convolution network (GCN) to polymerize the correlated segment attributes of the missing data segments. Then, the multitime dimension imputation model based on bidirectional long short-term memory (Bi-LSTM) incorporated the recent, daily-periodic, and weekly-periodic dependencies of the historical data. Finally, the spatial aggregated values and the temporal fusion values were integrated to obtain the results. We conducted comprehensive experiments based on the real-world dataset and discussed the case of random and continuous data missing by different time intervals, and the results showed that the proposed approach was feasible and accurate.
doi:10.1155/2022/1702170 fatcat:l3d72kmgjfeqzksbgmiqx5mitm