A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Modular decomposition and transitive orientation

1999
*
Discrete Mathematics
*

A module of an undirected graph is a set X of nodes such for each node x not in X, either every member of X is adjacent to x, or no member of X is adjacent to x. There is a canonical linear-space representation for the modules of a graph, called the modular decomposition. Closely related to modular decomposition is the transitive orientation problem, which is the problem of assigning a direction to each edge of a graph so that the resulting digraph is transitive. A graph is a comparability

doi:10.1016/s0012-365x(98)00319-7
fatcat:of5qq4jgdzgobbs5ehniofn6qe