Some polynomially solvable cases of the inverse ordered 1-median problem on trees

Kien Nguyen
<span title="">2017</span> <i title="National Library of Serbia"> <a target="_blank" rel="noopener" href="" style="color: black;">Filomat</a> </i> &nbsp;
We consider the problem of modifying the edge lengths of a tree at minimum cost such that a prespecified vertex become an ordered 1-median of the perturbed tree. We call this problem the inverse ordered 1-median problem on trees. Gassner showed in 2012 that the inverse ordered 1-median problem on trees is, in general, NP-hard. We, however, address some situations, where the corresponding inverse 1-median problem is polynomially solvable. For the problem on paths with n vertices, we develop an
more &raquo; ... n 3 ) algorithm based on a greedy technique. Furthermore, we prove the NP-hardness of the inverse ordered 1median problem on star graphs and propose a quadratic algorithm that solves the inverse ordered 1-median problem on unweighted stars.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.2298/fil1712651n</a> <a target="_blank" rel="external noopener" href="">fatcat:562lobykpvdvtdgej6xahh33gi</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / </button> </a>