MAPPING EXTENSION AND MAGNITUDE OF CHANGES INDUCED BY CYCLONE IDAI WITH MULTI-TEMPORAL LANDSAT AND SAR IMAGES

C. Amisse, M. E. Jijon-Palma, J. A. S. Centeno
2020 The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences  
Abstract. In this paper it is described a study case of a rapid assessment of change detections for post-cyclone Idai vegetated damage and flood extension estimation by fusion of multi-temporal Landsat and sentinel-1 SAR images. For automated change detection, after disasters, many algorithms have been proposed. To visualize the changes induced by cyclone we tested and compared two automated change detection techniques namely: Principal Components Analysis (PCA), Normalized Difference
more » ... ifference Vegetation Index (NDVI) and image segmentation. With the image segmentation of multispectral and SAR images, it was possible to visualize the extension of the wet area. For this specific application, PCA was identified as the optimal change detection indicator than NDVI. This study suggested that image segmentation, principal components analysis, and normalized difference vegetation index can be used for change detection of surface water due to flood and disasters especially in prone countries like Mozambique.
doi:10.5194/isprs-archives-xlii-3-w12-2020-273-2020 fatcat:lou34zuyvbey3h4zfyi5v27ds4