A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Prevalence Threshold and bounds in the Accuracy of Binary Classification Systems
[article]
2021
The accuracy of binary classification systems is defined as the proportion of correct predictions - both positive and negative - made by a classification model or computational algorithm. A value between 0 (no accuracy) and 1 (perfect accuracy), the accuracy of a classification model is dependent on several factors, notably: the classification rule or algorithm used, the intrinsic characteristics of the tool used to do the classification, and the relative frequency of the elements being
doi:10.48550/arxiv.2112.13289
fatcat:3wf3bgzj2ffmnillypz5h2hori