Invariant solutions of generalized Fisher-KPP equation

Mehdi Nadjafikhah, Masumeh Khameforoush-Yazdi
2019 Figshare  
In this paper‎, ‎we consider a hyperbolic generalized Fisher-KPP equation‎: ‎$\varepsilon^2 u_{tt}‎ + ‎g(u) u_t = ( k(u) u_x )_x‎ +‎f(u)$ where $f$‎, ‎$g $ ‎‎‎and $k$ are arbitrary smooth functions of variable $u$ and $\varepsilon$ is a speed parameter‎. ‎We find invariant solutions by Lie method‎. ‎Also‎, ‎we study standard and weak conditional and approximate symmetries‎.
doi:10.6084/m9.figshare.8246264 fatcat:wx4cmsc6mbcpzncicbexkkzxd4