A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2016; you can also visit the original URL.
The file type is application/pdf
.
SHED
2015
ACM Transactions on Graphics
Computing similarities or distances between 3D shapes is a crucial building block for numerous tasks, including shape retrieval, exploration and classification. Current state-of-the-art distance measures mostly consider the overall appearance of the shapes and are less sensitive to fine changes in shape structure or geometry. We present shape edit distance (SHED) that measures the amount of effort needed to transform one shape into the other, in terms of rearranging the parts of one shape to
doi:10.1145/2816795.2818116
fatcat:4trzmfampjcqziahs662mz5mdq