A smoothed particle hydrodynamics algorithm for haptic rendering of dental filling materials

Brian Tse, Alaistair Barrow, Barry Quinn, William S. Harwin
2015 2015 IEEE World Haptics Conference (WHC)  
Using haptic interfaces to assist the training of skills within the curriculum of undergraduate dentists provides a unique opportunity to advance rendering algorithms and engineering of haptic devices. In this paper we use the dental context to explore a rendering technique called smoothed particle hydrodynamics (SPH) as a potential method to train students on appropriate techniques for insertion of filling material into a previously prepared (virtual) dental cavity. The paper also considers
more » ... problems of haptic rendering might be implemented on a Graphical Processing Unit (GPU) that operates in the haptics control loop. The filling simulation used 3000 particles to represent the cavity boundary (approx. 1400 particles), tool (approx. 42 particles) and filling material (approx. 1600 particles), running at an average of 447Hz. Novel smoothing function in SPH was developed and its flexibility is presented.
doi:10.1109/whc.2015.7177732 dblp:conf/haptics/TseBQH15 fatcat:l3mrs5uc5zfy7k2srojyuxgpg4