Multiaccess Edge Computing Empowered Flying Ad Hoc Networks with Secure Deployment Using Identity-Based Generalized Signcryption

Muhammad Asghar Khan, Insaf Ullah, Shibli Nisar, Fazal Noor, Ijaz Mansoor Qureshi, Fahimullah Khanzada, Hizbullah Khattak, Muhammad Adnan Aziz
2020 Mobile Information Systems  
A group of small UAVs can synergize to form a flying ad hoc network (FANET). The small UAVs are, typically, prone to security lapses because of limited onboard power, restricted computing ability, insufficient bandwidth, etc. Such limitations hinder the applicability of standard cryptographic techniques. Thus, assuring confidentiality and authentication on part of small UAV remains a far-fetched goal. We aim to address such an issue by proposing an identity-based generalized signcryption
more » ... The lightweight security scheme employs multiaccess edge computing (MEC) whereby the primary UAV, as a MEC node, provides offloading to the computationally fragile member UAVs. The scheme is based on the concept of the hyperelliptic curve (HEC), which is characterized by a smaller key size and is, therefore, suitable for small UAVs. The scheme is robust since it offers confidentiality and authentication simultaneously as well as singly. Formal as well as informal security analyses and the validation results, using the Automated Validation for Internet Security Validation and Application (AVISPA) tool, second such notion. Comparative analysis with the existing schemes further authenticates the sturdiness of the proposed scheme. As a case study, the scheme is applied for monitoring crops in an agricultural field. It has been found out that the scheme promises higher security and incurs lower computational and communication costs.
doi:10.1155/2020/8861947 fatcat:jvzj5spklfchvkn7ikkxvx4bl4