Characterization of theAtSPX3Promoter Elucidates its Complex Regulation in Response to Phosphorus Deficiency

Ye Li, Huilan Wu, Huajie Fan, Ting Zhao, Hong-Qing Ling
2016 Plant and Cell Physiology  
AtSPX3, responding to phosphate (Pi) deficiency by its expression, is an important gene involved in Pi homeostasis in Arabidopsis. To understand its transcriptional regulation, we characterized the AtSPX3 promoter by distal truncation, internal deletion and mutation of the predicted cis-elements, and identified multiple cis-elements responsive to Pi status. The P1BS (AtPHR-binding site) and AtMyb4 (putative MYB4-binding site) elements were two main cis-elements in the AtSPX3 promoter. P1BS is
more » ... promoter. P1BS is essential and has a dosage effect for activating expression of the gene under Pi deficiency, while the element AtMyb4 possesses a dual function: one is to enhance AtSPX3 expression in roots under Pi deficiency, and the other one is to repress AtSPX3 expression in shoots under both Pi deficiency and sufficiency. Moreover, we confirmed that AtPHR1, a key transcription factor in Pi homeostasis of plants, was required for the negative regulation function of the AtMyb4 element in shoots. Additionally, we also found that the AtSPX3 promoter had a length limitation for activating gene expression. Generally, our findings in this work are useful for understanding the molecular regulation mechanism of genes involved in Pi uptake and homeostasis.
doi:10.1093/pcp/pcw100 pmid:27382128 fatcat:fpsys6wtdfdyzhrz6fflozpbnu