Identification and validation of a prognostic 5-protein signature for biochemical recurrence following radical prostatectomy in prostate cancer [post]

Xiangkun Wu, Wenjie Li, Daojun Lv, Yongda Liu, Di Gu
2020 unpublished
Background : Biochemical recurrence (BCR) is considered as an indicator for prostate cancer (PCa)-specific recurrence and mortality. However, lack of effective prediction model to assess the prognosis of patients for optimization of treatment. The aim of this work was to construct a protein-based nomogram that could predict BCR for PCa.Materials and methods: Univariate Cox regression analysis was conducted to identify candidate proteins from the Cancer Genome Atlas (TCGA) database. LASSO Cox
more » ... ression was further conducted to pick out the most significant prognostic proteins and formulate the proteins signature for predicting BCR. Additionally, a nomogram was constructed by multivariate Cox proportional hazards regression.Results: We established a 5‐protein-based signature which was well used to identify PCa patients into high‐ and low‐risk groups. Kaplan-Meier analysis demonstrated patients with higher BCR generally had significantly worse survival than those with lower BCR (p<0.0001). Time-dependent receiver operating characteristic curve expounded that ours signature had excellent prognostic efficiency for 1‐, 3‐ and 5‐year BCR (area under curve in training set: 0.691, 0.797, 0.808 and 0.74, 0.739, 0.82 in the test set). Univariable and multivariate Cox regression analysis showed that this 5‐protein signature was an independent of several clinical signatures including age, Gleason score, T stage, N status, PSA and residual tumor. Moreover, a nomogram was constructed and calibration plots confirmed the its predictive value in 3-, 5- and 10-year BCR overall survival.Conclusion: Our study identified a 5-protein-based signature and constructed a prognostic nomogram that reliably predicts BCR in prostate cancer. The findings might be of paramount importance in tumor prognosis and medical decision-making.
doi:10.21203/ fatcat:22ba4m6kfjdtzmernxnjcgg7tu