On algebraic generalized zeta functions of formal power series

Juha Honkala
<span title="">1991</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/elaf5sq7lfdxfdejhkqbtz6qoq" style="color: black;">Theoretical Computer Science</a> </i> &nbsp;
Honkala, J , 0n algebraic generalized zeta functions of formal power series, Theoretical Computer Science 79 (1991) 263-273. We study algebraic generalized zeta functions of formal power series. We show that the generalized zeta function of a rational series is an algebraic function if and only if it is a root of a rational function. We show that it is decidable whether or not the generalized zeta function of a Q-rational series is an algebraic function. 0304-3975/91/$03.50 @ 1991-Elsevier Science Publishers B.V. (North-Holland)
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(91)90156-v">doi:10.1016/0304-3975(91)90156-v</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rjlosugn55bwvp5wusbaadpo7m">fatcat:rjlosugn55bwvp5wusbaadpo7m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171005231131/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/fd0/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wMzA0Mzk3NTkxOTAxNTZ2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f2/07/f207825950ba5d0aa3fae7d8b7b6c5ef282cc223.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(91)90156-v"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>