Regulation and functions of burst firing: the role of KCNQ3 potassium channels in vivo [article]

Xiaojie Gao, Humboldt-Universität Zu Berlin
Ion channels conduct ion flows across neuronal membrane whereby action potential is generated and propagated. They play a central role in regulating the excitability and firing behavior of a neuron. Among them, the KCNQs present a prominent family of voltage-gated potassium channels. Dysfunction of KCNQ2–5 channels can lead to varied neurological diseases including early onset epilepsy and deafness. In cortex and hippocampus, KCNQ2 and KCNQ3 have been demonstrated to underlie the
more » ... the non-inactivating M-current critical for controlling the repetitive firing of pyramidal cells. However, the functional significance of KCNQ3, unlike that of KCNQ2, remains elusive. Here, by applying in vivo extracellular electrophysiology in Kcnq3 constitutive knockout mice and the wild-type littermates, we find that hippocampal pyramidal cells lacking KCNQ3 exhibit increased burst firing. Moreover, the spike frequency adaptation of their bursts is diminished, and the burst propensity during two different field oscillations – theta versus non-theta – becomes indistinguishable. During theta oscillations, Kcnq3 knockout pyramidal cells no longer display unimodal phase preference and do not coordinate their burst firing. But phase advancement along successive theta cycles continues to occur at times of transiently intensified firing. The selective firing of place cells is largely preserved in the knockout while mainly relying on bursts. These results suggest that KCNQ3 channels indeed play a significant and specific role in regulating the neurons' excitability and information processing, thus providing crucial mechanistic insights into the relevance of the KCNQ3 channels in neurological disorders.
doi:10.18452/22144 fatcat:uqxvaxkpy5elrnwu5p7s4fjlra